ﻻ يوجد ملخص باللغة العربية
We identify four types of higher-order topological semimetals or nodal superconductors (HOTS), hosting (i) flat zero-energy Fermi arcs at crystal hinges, (ii) flat zero-energy hinge arcs coexisting with surface Dirac cones, (iii) chiral or helical hinge modes, or (iv) flat zero-energy hinge arcs connecting nodes only at finite momentum. Bulk-boundary correspondence relates the hinge states to the bulk topology protecting the nodal point or loop. We classify all HOTS for all tenfold-way classes with an order-two crystalline (anti-)symmetry, such as mirror, twofold rotation, or inversion.
Second-order topological insulators and superconductors have a gapped excitation spectrum in bulk and along boundaries, but protected zero modes at corners of a two-dimensional crystal or protected gapless modes at hinges of a three-dimensional cryst
We introduce higher-order topological Dirac superconductor (HOTDSC) as a new gapless topological phase of matter in three dimensions, which extends the notion of Dirac phase to a higher-order topological version. Topologically distinct from the tradi
We show that a two-dimensional semiconductor with Rashba spin-orbit coupling could be driven into the second-order topological superconducting phase when a mixed-pairing state is introduced. The superconducting order we consider involves only even-pa
We study surface states of topological crystalline insulators and superconductors protected by inversion symmetry. These fall into the category of higher-order topological insulators and superconductors which possess surface states that propagate alo
A two-dimensional (2D) topological semimetal is characterized by the nodal points in its low-energy band structure. While the linear nodal points have been extensively studied, especially in the context of graphene, the realm beyond linear nodal poin