ترغب بنشر مسار تعليمي؟ اضغط هنا

Higher-order topological semimetals and nodal superconductors with an order-two crystalline symmetry

231   0   0.0 ( 0 )
 نشر من قبل Max Geier
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We identify four types of higher-order topological semimetals or nodal superconductors (HOTS), hosting (i) flat zero-energy Fermi arcs at crystal hinges, (ii) flat zero-energy hinge arcs coexisting with surface Dirac cones, (iii) chiral or helical hinge modes, or (iv) flat zero-energy hinge arcs connecting nodes only at finite momentum. Bulk-boundary correspondence relates the hinge states to the bulk topology protecting the nodal point or loop. We classify all HOTS for all tenfold-way classes with an order-two crystalline (anti-)symmetry, such as mirror, twofold rotation, or inversion.



قيم البحث

اقرأ أيضاً

Second-order topological insulators and superconductors have a gapped excitation spectrum in bulk and along boundaries, but protected zero modes at corners of a two-dimensional crystal or protected gapless modes at hinges of a three-dimensional cryst al. A second-order topological phase can be induced by the presence of a bulk crystalline symmetry. Building on Shiozaki and Satos complete classification of bulk crystalline phases with an order-two crystalline symmetry [Phys. Rev. B {bf 90}, 165114 (2014)], such as mirror reflection, twofold rotation, or inversion symmetry, we classify all corresponding second-order topological insulators and superconductors. The classification also includes antiunitary symmetries and antisymmetries.
We introduce higher-order topological Dirac superconductor (HOTDSC) as a new gapless topological phase of matter in three dimensions, which extends the notion of Dirac phase to a higher-order topological version. Topologically distinct from the tradi tional topological superconductors and known Dirac superconductors, a HOTDSC features helical Majorana hinge modes between adjacent surfaces, which are direct consequences of the symmetry-protected higher-order band topology manifesting in the system. Specifically, we show that rotational, spatial inversion, and time-reversal symmetries together protect the coexistence of bulk Dirac nodes and hinge Majorana modes in a seamless way. We define a set of topological indices that fully characterizes the HOTDSC. We further show that a practical way to realize the HOTDSC phase is to introduce unconventional odd-parity pairing to a three-dimensional Dirac semimetal while preserving the necessary symmetries. As a concrete demonstration of our idea, we construct a corresponding minimal lattice model for HOTDSC obeying the symmetry constraints. Our model exhibits the expected topological invariants in the bulk and the defining spectroscopic features on an open geometry, as we explicitly verify both analytically and numerically. Remarkably, the HOTDSC phase offers an example of a higher-order topological quantum critical point, which enables realizations of various higher-order topological phases under different symmetry-breaking patterns. In particular, by breaking the inversion symmetry of a HOTDSC, we arrive at a higher-order Weyl superconductor, which is yet another new gapless topological state that exhibits hybrid higher-order topology.
169 - Xiaoyu Zhu 2018
We show that a two-dimensional semiconductor with Rashba spin-orbit coupling could be driven into the second-order topological superconducting phase when a mixed-pairing state is introduced. The superconducting order we consider involves only even-pa rity components and meanwhile breaks time-reversal symmetry. As a result, each corner of a square-shaped Rashba semiconductor would host one single Majorana zero mode in the second-order nontrivial phase. Starting from edge physics, we are able to determine the phase boundaries accurately. A simple criterion for the second-order phase is further established, which concerns the relative position between Fermi surfaces and nodal points of the superconducting order parameter. In the end, we propose two setups that may bring this mixed-pairing state into the Rashba semiconductor, followed by a brief discussion on the experimental feasibility of the two platforms.
70 - Eslam Khalaf 2018
We study surface states of topological crystalline insulators and superconductors protected by inversion symmetry. These fall into the category of higher-order topological insulators and superconductors which possess surface states that propagate alo ng one-dimensional curves (hinges) or are localized at some points (corners) on the surface. We show that the surface states of higher-order topological insulators and superconductors can be thought of as globally irremovable topological defects and provide a complete classification of these inversion-protected phases in any spatial dimension for the ten symmetry classes by means of a layer construction. Furthermore, we discuss possible physical realizations of such states starting with a time-reversal invariant topological insulator (class AII) in three dimensions or a time-reversal invariant topological superconductor (class DIII) in two or three dimensions. The former can be used to build a three-dimensional second-order topological insulator which exhibits one-dimensional chiral or helical modes propagating along opposite edges, whereas the latter enables the construction of three-dimensional third-order or two-dimensional second-order topological superconductors hosting Majorana zero modes localized to two opposite corners. Being protected by inversion, such states are not pinned to a specific pair of edges or corners thus offering the possibility of controlling their location by applying inversion-symmetric perturbations such as magnetic field.
A two-dimensional (2D) topological semimetal is characterized by the nodal points in its low-energy band structure. While the linear nodal points have been extensively studied, especially in the context of graphene, the realm beyond linear nodal poin ts remains largely unexplored. Here, we explore the possibility of higher-order nodal points, i.e., points with higher-order energy dispersions, in 2D systems. We perform an exhaustive search over all 80 layer groups both with and without spin-orbit coupling (SOC), and reveal all possible higher-order nodal points. We show that they can be classified into two categories: the quadratic nodal point (QNP) and the cubic nodal point (CNP). All the 2D higher-order nodal points have twofold degeneracy, and the order of dispersion cannot be higher than three. QNPs only exist in the absence of SOC, whereas CNPs only exist in the presence of SOC. Particularly, the CNPs represent a new topological state not known before. We show that they feature nontrivial topological charges, leading to extensive topological edge bands. Our work completely settles the problem of higher-order nodal points, discovers novel topological states in 2D, and provides detailed guidance to realize these states. Possible material candidates and experimental signatures are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا