ﻻ يوجد ملخص باللغة العربية
Organic Photovoltaic devices (OPVs) are becoming adequately cost and energy efficient to be considered a good investment and it is, therefore, especially important to have a concrete understanding of their operation. We compute energies of charge-transfer (CT) states of the model donor-acceptor lattice system with varying degrees of structural disorder to investigate how fluctuations in the material properties affect electron-hole separation. We also demonstrate how proper statistical treatment of the CT energies recovers experimentally observed hot and cold exciton dissociation pathways. Using a quantum mechanical model for a model heterojunction interface, we recover experimental values for the open-circuit voltage at 50 and 100meV of site-energy disorder. We find that energetic and conformational disorder generally facilitates charge transfer; however, due to excess energy supplied by photoexcitation, highly energetic electron-hole pairs can dissociate in unfavorable directions, potentially never contributing to the photocurrent. We find that cold excitons follow the free energy curve defined at the operating temperature of the device. Our results provide a unifying picture linking various proposed mechanisms for charge separation.
Graphene has shown great application opportunities in future nanoelectronic devices due to its outstanding electronic properties. Moreover, its impressive optical properties have been attracting the interest of researchers, and, recently, the photovo
In organic bulk heterojunction solar cells, the open circuit voltage ($V_mathrm{oc}$) suffers from an ultra-high loss at low temperatures. In this work we investigate the origin of the loss through calculating the $V_mathrm{oc}-T$ plots with the devi
Fundamental electronic processes such as charge-carrier transport and recombination play a critical role in determining the efficiency of hybrid perovskite solar cells. The presence of mobile ions complicates the development of a clear understanding
The presence of interface recombination in a complex multilayered thin-film solar structure causes a disparity between the internal open-circuit voltage (VOC,in), measured by photoluminescence, and the external open-circuit voltage (VOC,ex) i.e. an a
There is evidence that interface recombination in Cu2ZnSnS4 solar cells contributes to the open-circuit voltage deficit. Our hybrid density functional theory calculations suggest that electron-hole recombination at the Cu2ZnSnS4/CdS interface is caus