ترغب بنشر مسار تعليمي؟ اضغط هنا

Energetic disorder induced leakage current in organic bulk heterojunction solar cells: comprehending the ultra-high open circuit voltage loss at low temperatures

345   0   0.0 ( 0 )
 نشر من قبل Wenchao Yang
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In organic bulk heterojunction solar cells, the open circuit voltage ($V_mathrm{oc}$) suffers from an ultra-high loss at low temperatures. In this work we investigate the origin of the loss through calculating the $V_mathrm{oc}-T$ plots with the device model method systematically and comparing it with experimentally observed ones. When the energetic disorder is incorporated into the model by considering the disorder-suppressed and temperature-dependent charge carrier mobilities, it is found that for nonselective contacts the $V_mathrm{oc}$ reduces drastically under the low temperature regime, while for selective contacts the $V_mathrm{oc}$ keeps increasing with the decreasing temperature. The main reason is revealed that as the temperature decreases, the reduced mobilities give rise to low charge extraction efficiency and small bimolecular recombination rate for the photogenerated charge carriers, so that in the former case they can be extracted from the wrong electrode to form a leakage current which counteracts the photocurrent and increases quickly with voltage, leading to the anomalous reduction of $V_mathrm{oc}$. In addition, it is revealed that the charge generation rate is slow-varying with temperature and does not induce significant $V_mathrm{oc}$ loss. This work also provides a comprehensive picture for the $V_mathrm{oc}$ behavior under varying device working conditions.



قيم البحث

اقرأ أيضاً

Fundamental electronic processes such as charge-carrier transport and recombination play a critical role in determining the efficiency of hybrid perovskite solar cells. The presence of mobile ions complicates the development of a clear understanding of these processes as the ions may introduce exceptional phenomena such as hysteresis or giant dielectric constants. As a result, the electronic landscape, including its interaction with mobile ions, is difficult to access both experimentally and analytically. To address this challenge, we applied a series of small perturbation techniques including impedance spectroscopy (IS), intensity-modulated photocurrent spectroscopy (IMPS) and intensity-modulated photovoltage spectroscopy (IMVS) to planar $mathrm{MAPbI_3}$ perovskite solar cells. Our measurements indicate that both electronic as well as ionic responses can be observed in all three methods and assigned by literature comparison. The results reveal that the dominant charge-carrier loss mechanism is surface recombination by limitation of the quasi-Fermi level splitting. The interaction between mobile ions and the electronic charge carriers leads to a shift of the apparent diode ideality factor from 0.74 to 1.64 for increasing illumination intensity, despite the recombination mechanism remaining unchanged.
There is evidence that interface recombination in Cu2ZnSnS4 solar cells contributes to the open-circuit voltage deficit. Our hybrid density functional theory calculations suggest that electron-hole recombination at the Cu2ZnSnS4/CdS interface is caus ed by a deeper conduction band that slows electron extraction. In contrast, the bandgap is not narrowed for the Cu2ZnSnSe4/CdS interface, consistent with a lower open-circuit voltage deficit.
We investigate nongeminate recombination in organic solar cells based on copper phthalocyanine (CuPc) and C$_{60}$. Two device architectures, the planar heterojunction (PHJ) and the bulk heterojunction (BHJ), are directly compared in view of differen ces in charge carrier decay dynamics. We apply a combination of transient photovoltage (TPV) experiments, yielding the small perturbation charge carrier lifetime, and charge extraction measurements, providing the charge carrier density. In organic solar cells, charge photogeneration and recombination primarily occur at the donor--acceptor heterointerface. Whereas the BHJ can often be approximated by an effective medium due to rather small scale phase separation, the PHJ has a well defined two-dimensional heterointerface. To study recombination dynamics in PHJ devices most relevant is the charge accumulation at this interface. As from extraction techniques only the spatially averaged carrier concentration can be determined, we derive the charge carrier density at the interface $n_{int}$ from the open circuit voltage. Comparing the experimental results with macroscopic device simulation we discuss the differences of recombination and charge carrier densities in CuPc:C$_{60}$ PHJ and BHJ devices with respect to the device performance. The open circuit voltage of BHJ is larger than for PHJ at low light intensities, but at 0.3 sun the situation is reversed: here, the PHJ can finally take advantage of its generally longer charge carrier lifetimes, as the active recombination region is smaller.
216 - R. Hausermann , E. Knapp , M. Moos 2009
A general problem arising in computer simulations is the number of material and device parameters, which have to be determined by dedicated experiments and simulation-based parameter extraction. In this study we analyze measurements of the short-circ uit current dependence on the active layer thickness and current-voltage curves in poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) based solar cells. We have identified a set of parameter values including dissociation parameters that describe the experimental data. The overall agreement of our model with experiment is good, however a discrepancy in the thickness dependence of the current-voltage curve questions the influence of the electric field in the dissociation process. In addition transient simulations are analyzed which show that a measurement of the turn-off photocurrent can be useful for estimating charge carrier mobilities.
Organic Photovoltaic devices (OPVs) are becoming adequately cost and energy efficient to be considered a good investment and it is, therefore, especially important to have a concrete understanding of their operation. We compute energies of charge-tra nsfer (CT) states of the model donor-acceptor lattice system with varying degrees of structural disorder to investigate how fluctuations in the material properties affect electron-hole separation. We also demonstrate how proper statistical treatment of the CT energies recovers experimentally observed hot and cold exciton dissociation pathways. Using a quantum mechanical model for a model heterojunction interface, we recover experimental values for the open-circuit voltage at 50 and 100meV of site-energy disorder. We find that energetic and conformational disorder generally facilitates charge transfer; however, due to excess energy supplied by photoexcitation, highly energetic electron-hole pairs can dissociate in unfavorable directions, potentially never contributing to the photocurrent. We find that cold excitons follow the free energy curve defined at the operating temperature of the device. Our results provide a unifying picture linking various proposed mechanisms for charge separation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا