ترغب بنشر مسار تعليمي؟ اضغط هنا

High Open-circuit Voltage of Graphene-Based Photovoltaic Cells Modulated by Layer-by-Layer Transfer

227   0   0.0 ( 0 )
 نشر من قبل Kyuwook Ihm
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Graphene has shown great application opportunities in future nanoelectronic devices due to its outstanding electronic properties. Moreover, its impressive optical properties have been attracting the interest of researchers, and, recently, the photovoltaic effects of a heterojunction structure embedded with few layer graphene (FLG) have been demonstrated. Here, we report the photovoltaic response of graphene-semiconductor junctions and the controlled open-circuit voltage (Voc) with varying numbers of graphene layers. After unavoidably adsorbed contaminants were removed from the FLGs, by means of in situ annealing, prepared by layer-by-layer transfer of the chemically grown graphene layer, the work functions of FLGs showed a sequential increase as the graphene layers increase, despite of random interlayer-stacking, resulting in the modulation of photovoltaic behaviors of FLGs/Si interfaces. The surface photovoltaic effects observed here show an electronic realignment in the depth direction in the FLG heterojunction systems, indicating future potential toward solar devices utilizing the excellent transparency and flexibility of FLG.



قيم البحث

اقرأ أيضاً

Fundamental electronic processes such as charge-carrier transport and recombination play a critical role in determining the efficiency of hybrid perovskite solar cells. The presence of mobile ions complicates the development of a clear understanding of these processes as the ions may introduce exceptional phenomena such as hysteresis or giant dielectric constants. As a result, the electronic landscape, including its interaction with mobile ions, is difficult to access both experimentally and analytically. To address this challenge, we applied a series of small perturbation techniques including impedance spectroscopy (IS), intensity-modulated photocurrent spectroscopy (IMPS) and intensity-modulated photovoltage spectroscopy (IMVS) to planar $mathrm{MAPbI_3}$ perovskite solar cells. Our measurements indicate that both electronic as well as ionic responses can be observed in all three methods and assigned by literature comparison. The results reveal that the dominant charge-carrier loss mechanism is surface recombination by limitation of the quasi-Fermi level splitting. The interaction between mobile ions and the electronic charge carriers leads to a shift of the apparent diode ideality factor from 0.74 to 1.64 for increasing illumination intensity, despite the recombination mechanism remaining unchanged.
There is evidence that interface recombination in Cu2ZnSnS4 solar cells contributes to the open-circuit voltage deficit. Our hybrid density functional theory calculations suggest that electron-hole recombination at the Cu2ZnSnS4/CdS interface is caus ed by a deeper conduction band that slows electron extraction. In contrast, the bandgap is not narrowed for the Cu2ZnSnSe4/CdS interface, consistent with a lower open-circuit voltage deficit.
Engineering the energetics of perovskite photovoltaic devices through the deliberate introduction of dipoles to control the built-in potential of the devices offers the opportunity to enhance their performance without the need to modify the active la yer itself. In this work, we demonstrate how the incorporation of molecular dipoles into the bathocuproine (BCP) hole-blocking layer of inverted perovskite solar cells improves the device open-circuit voltage (VOC) and consequently, its performance. We explore a series of four thiaazulenic derivatives that exhibit increasing dipole moments and demonstrate that these molecules can be introduced into the solution-processed BCP layer to effectively increase the built-in potential within the device, without altering any of the other device layers. As a result the VOC of the devices is enhanced by up to 130 mV with larger dipoles resulting in higher VOCs. To investigate the limitations of this approach, we employ numerical device simulations that demonstrate that the highest dipole derivatives used in this work eliminate all limitations on the VOC stemming from the built-in potential of the device.
Organic Photovoltaic devices (OPVs) are becoming adequately cost and energy efficient to be considered a good investment and it is, therefore, especially important to have a concrete understanding of their operation. We compute energies of charge-tra nsfer (CT) states of the model donor-acceptor lattice system with varying degrees of structural disorder to investigate how fluctuations in the material properties affect electron-hole separation. We also demonstrate how proper statistical treatment of the CT energies recovers experimentally observed hot and cold exciton dissociation pathways. Using a quantum mechanical model for a model heterojunction interface, we recover experimental values for the open-circuit voltage at 50 and 100meV of site-energy disorder. We find that energetic and conformational disorder generally facilitates charge transfer; however, due to excess energy supplied by photoexcitation, highly energetic electron-hole pairs can dissociate in unfavorable directions, potentially never contributing to the photocurrent. We find that cold excitons follow the free energy curve defined at the operating temperature of the device. Our results provide a unifying picture linking various proposed mechanisms for charge separation.
Germanium is emerging as the substrate of choice for the growth of graphene in CMOS-compatible processes. For future application in next generation devices the accurate control over the properties of high-quality graphene synthesized on Ge surfaces, such as number of layers and domain size, is of paramount importance. Here we investigate the role of the process gas flows on the CVD growth of graphene on Ge(100). The quality and morphology of the deposited material is assessed by using microRaman spectroscopy, x-ray photoemission spectroscopy, scanning electron and atomic force microscopies. We find that by simply varying the carbon precursor flow different growth regimes - yielding to graphene nanoribbons, graphene monolayer and graphene multilayer - are established. We identify the growth conditions yielding to a layer-by-layer growth regime and report on the achievement of homogeneous monolayer graphene with an average intensity ratio of 2D and G bands in the Raman map larger than 3.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا