ﻻ يوجد ملخص باللغة العربية
A central challenge for the scaling of quantum computing systems is the need to control all qubits in the system without a large overhead. A solution for this problem in classical computing comes in the form of so called crossbar architectures. Recently we made a proposal for a large scale quantum processor~[Li et al. arXiv:1711.03807 (2017)] to be implemented in silicon quantum dots. This system features a crossbar control architecture which limits parallel single qubit control, but allows the scheme to overcome control scaling issues that form a major hurdle to large scale quantum computing systems. In this work, we develop a language that makes it possible to easily map quantum circuits to crossbar systems, taking into account their architecture and control limitations. Using this language we show how to map well known quantum error correction codes such as the planar surface and color codes in this limited control setting with only a small overhead in time. We analyze the logical error behavior of this surface code mapping for estimated experimental parameters of the crossbar system and conclude that logical error suppression to a level useful for real quantum computation is feasible.
To implement fault-tolerant quantum computation with continuous variables, the Gottesman--Kitaev--Preskill (GKP) qubit has been recognized as an important technological element. We have proposed a method to reduce the required squeezing level to real
Quantum error correction (QEC) is an essential concept for any quantum information processing device. Typically, QEC is designed with minimal assumptions about the noise process; this generic assumption exacts a high cost in efficiency and performanc
Based on the group structure of a unitary Lie algebra, a scheme is provided to systematically and exhaustively generate quantum error correction codes, including the additive and nonadditive codes. The syndromes in the process of error-correction dis
Continuous-time quantum error correction (CTQEC) is an approach to protecting quantum information from noise in which both the noise and the error correcting operations are treated as processes that are continuous in time. This chapter investigates C
We consider error correction in quantum key distribution. To avoid that Alice and Bob unwittingly end up with different keys precautions must be taken. Before running the error correction protocol, Bob and Alice normally sacrifice some bits to estima