ﻻ يوجد ملخص باللغة العربية
In this note we consider M-theory compactified on a warped Calabi-Yau fourfold including the eight-derivative terms in the eleven-dimensional action known in the literature. We dimensionally reduce this theory on geometries with one Kahler modulus and determine the resulting three-dimensional Kahler potential and complex coordinate. The logarithmic form of the corrections suggests that they might admit a physical interpretation in terms of one-loop corrections to the effective action. Including only the known terms the no-scale condition in three dimensions is broken, but we discuss caveats to this conclusion. In particular, we consider additional new eight-derivative terms in eleven dimensions and show that they are strongly constrained by compatibility with the Calabi-Yau threefold reduction. We examine their impact on the Calabi-Yau fourfold reduction and the restoration of the no-scale property.
We study possible CFT duals of supersymmetric five dimensional black rings in the presence of supersymmetric higher derivative corrections to the N=2 supergravity action. A Virasoro algebra associated to an asymptotic symmetry group of solutions is d
We study $(2,2)$ and $(4,4)$ supersymmetric theories with superspace higher derivatives in two dimensions. A characteristic feature of these models is that they have several different vacua, some of which break supersymmetry. Depending on the vacuum,
We investigate the swampland distance conjecture (SDC) in the complex moduli space of type II compactifications on one-parameter Calabi-Yau threefolds. This class of manifolds contains hundreds of examples and, in particular, a subset of 14 geometrie
We show how the smooth geometry of Calabi-Yau manifolds emerges from the thermodynamic limit of the statistical mechanical model of crystal melting defined in our previous paper arXiv:0811.2801. In particular, the thermodynamic partition function of
We prove that a Kahler supermetric on a supermanifold with one complex fermionic dimension admits a super Ricci-flat supermetric if and only if the bosonic metric has vanishing scalar curvature. As a corollary, it follows that Yaus theorem does not hold for supermanifolds.