ترغب بنشر مسار تعليمي؟ اضغط هنا

On Calabi-Yau supermanifolds

145   0   0.0 ( 0 )
 نشر من قبل Martin Rocek
 تاريخ النشر 2004
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove that a Kahler supermetric on a supermanifold with one complex fermionic dimension admits a super Ricci-flat supermetric if and only if the bosonic metric has vanishing scalar curvature. As a corollary, it follows that Yaus theorem does not hold for supermanifolds.



قيم البحث

اقرأ أيضاً

We study when Calabi-Yau supermanifolds M(1|2) with one complex bosonic coordinate and two complex fermionic coordinates are super Ricci-flat, and find that if the bosonic manifold is compact, it must have constant scalar curvature.
In the neighborhood of a regular point, generalized Kahler geometry admits a description in terms of a single real function, the generalized Kahler potential. We study the local conditions for a generalized Kahler manifold to be a generalized Calabi- Yau manifold and we derive a non-linear PDE that the generalized Kahler potential has to satisfy for this to be true. This non-linear PDE can be understood as a generalization of the complex Monge-Ampere equation and its solutions give supergravity solutions with metric, dilaton and H-field.
We derive global constraints on the non-BPS sector of supersymmetric 2d sigma-models whose target space is a Calabi-Yau manifold. When the total Hodge number of the Calabi-Yau threefold is sufficiently large, we show that there must be non-BPS primar y states whose total conformal weights are less than 0.656. Moreover, the number of such primary states grows at least linearly in the total Hodge number. We discuss implications of these results for Calabi-Yau geometry.
We show how the smooth geometry of Calabi-Yau manifolds emerges from the thermodynamic limit of the statistical mechanical model of crystal melting defined in our previous paper arXiv:0811.2801. In particular, the thermodynamic partition function of molten crystals is shown to be equal to the classical limit of the partition function of the topological string theory by relating the Ronkin function of the characteristic polynomial of the crystal melting model to the holomorphic 3-form on the corresponding Calabi-Yau manifold.
534 - S. Rollenske , R. P. Thomas 2019
Let X be an n-dimensional Calabi-Yau with ordinary double points, where n is odd. Friedman showed that for n=3 the existence of a smoothing of X implies a specific type of relation between homology classes on a resolution of X. (The converse is also true, due to work of Friedman, Kawamata and Tian.) We sketch a more topological proof of this result, and then extend it to higher dimensions. For n>3 the Yukawa product on the middle dimensional (co)homology plays an unexpected role. We also discuss a converse, proving it for nodal Calabi-Yau hypersurfaces in projective space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا