ﻻ يوجد ملخص باللغة العربية
We study possible CFT duals of supersymmetric five dimensional black rings in the presence of supersymmetric higher derivative corrections to the N=2 supergravity action. A Virasoro algebra associated to an asymptotic symmetry group of solutions is defined by using the Kerr/CFT approach. We find the central charge and compute the microscopic entropy which is in precise agreement with the macroscopic entropy. Although apparently related to a different aspect of the near-horizon geometry and a different Virasoro algebra, we find that the c-extremization method leads to the same central charge and microscopic entropy computed in the Kerr/CFT approach. The relationship between these two point of view is clarified by relating the geometry to a self-dual orbifold of AdS3.
The near horizon geometry of the rotating C-metric, describing accelerating Kerr-Newman black holes, is analysed. It is shown that, at extremality, even though not it is isomorphic to the extremal Kerr-Newman, it remains a warped and twisted product
Kerr/CFT correspondence has been recently applied to various types of 5D extremal rotating black holes. A common feature of all such examples is the existence of two chiral CFT duals corresponding to the U(1) symmetries of the near horizon geometry.
We study $(2,2)$ and $(4,4)$ supersymmetric theories with superspace higher derivatives in two dimensions. A characteristic feature of these models is that they have several different vacua, some of which break supersymmetry. Depending on the vacuum,
In this note we consider M-theory compactified on a warped Calabi-Yau fourfold including the eight-derivative terms in the eleven-dimensional action known in the literature. We dimensionally reduce this theory on geometries with one Kahler modulus an
We generalize the higher-derivative F-terms introduced by Beasley and Witten (hep-th/0409149) for SU(2) superQCD to Sp(N) gauge theories with fundamental matter. We generate these terms by integrating out massive modes at tree level from an effective