ﻻ يوجد ملخص باللغة العربية
We derive a static potential for a heavy quark-antiquark pair propagating in Minkowski time at finite temperature, by defining a suitable gauge-invariant Greens function and computing it to first non-trivial order in Hard Thermal Loop resummed perturbation theory. The resulting Debye-screened potential could be used in models that attempt to describe the ``melting of heavy quarkonium at high temperatures. We show, in particular, that the potential develops an imaginary part, implying that thermal effects generate a finite width for the quarkonium peak in the dilepton production rate. For quarkonium with a very heavy constituent mass M, the width can be ignored for T lsim g^2 M/12pi, where g^2 is the strong gauge coupling; for a physical case like bottomonium, it could become important at temperatures as low as 250 MeV. Finally, we point out that the physics related to the finite width originates from the Landau-damping of low-frequency gauge fields, and could be studied non-perturbatively by making use of the classical approximation.
We give a brief review of the current understanding of renormalons of the static QCD potential in coordinate and momentum spaces. We also reconsider estimate of the normalization constant of the $u=3/2$ renormalon and propose a new way to improve the estimate.
Following the procedure and motivations developed by Richardson, Buchmuller and Tye, we derive the potential of static quarks consistent with both the three-loop running of QCD coupling constant under the two-loop perturbative matching of V and MS-ba
We report results on the static quark potential in two-flavor full QCD. The calculation is performed for three values of lattice spacing $a^{-1}approx 0.9, 1.3$ and 2.5 GeV on $12^3{times}24, 16^3{times}32$ and $24^3{times}48$ lattices respectively,
We determine the strong coupling constant $alpha_s(M_Z)$ from the static QCD potential by matching a lattice result and a theoretical calculation. We use a new theoretical framework based on operator product expansion (OPE), where renormalons are sub
We determine the strong coupling constant $alpha_s$ from the static QCD potential by matching a theoretical calculation with a lattice QCD computation. We employ a new theoretical formulation based on the operator product expansion, in which renormal