ﻻ يوجد ملخص باللغة العربية
We study the impact of the Gradient Flow on the topology in various models of lattice field theory. The topological susceptibility $chi_{rm t}$ is measured directly, and by the slab method, which is based on the topological content of sub-volumes (slabs) and estimates $chi_{rm t}$ even when the system remains trapped in a fixed topological sector. The results obtained by both methods are essentially consistent, but the impact of the Gradient Flow on the characteristic quantity of the slab method seems to be different in 2-flavour QCD and in the 2d O(3) model. In the latter model, we further address the question whether or not the Gradient Flow leads to a finite continuum limit of the topological susceptibility (rescaled by the correlation length squared, $xi^{2}$). This ongoing study is based on direct measurements of $chi_{rm t}$ in $L times L$ lattices, at $L/xi simeq 6$.
The 2d O(3) model is widely used as a toy model for ferromagnetism and for Quantum Chromodynamics. With the latter it shares --- among other basic aspects --- the property that the continuum functional integral splits into topological sectors. Topolo
We study temperature dependence of the topological susceptibility with the $N_{f}=2+1$ flavors Wilson fermion. We have two major interests in this paper. One is a comparison of gluonic and fermionic definitions of the topological susceptibility. Two
We compute the topological charge and its susceptibility in finite temperature (2+1)-flavor QCD on the lattice applying a gradient flow method. With the Iwasaki gauge action and nonperturbatively $O(a)$-improved Wilson quarks, we perform simulations
In lattice QCD with Wilson-type quarks, the chiral symmetry is explicitly broken by the Wilson term on finite lattices. Though the symmetry is guaranteed to recover in the continuum limit, a series of non-trivial procedures are required to recover th
We compare lattice QCD determinations of topological susceptibility using a gluonic definition from the gradient flow and a fermionic definition from the spectral projector method. We use ensembles with dynamical light, strange and charm flavors of m