ﻻ يوجد ملخص باللغة العربية
We compare lattice QCD determinations of topological susceptibility using a gluonic definition from the gradient flow and a fermionic definition from the spectral projector method. We use ensembles with dynamical light, strange and charm flavors of maximally twisted mass fermions. For both definitions of the susceptibility we employ ensembles at three values of the lattice spacing and several quark masses at each spacing. The data are fitted to chiral perturbation theory predictions with a discretization term to determine the continuum chiral condensate in the massless limit and estimate the overall discretization errors. We find that both approaches lead to compatible results in the continuum limit, but the gluonic ones are much more affected by cut-off effects. This finally yields a much smaller total error in the spectral projector results. We show that there exists, in principle, a value of the spectral cutoff which would completely eliminate discretization effects in the topological susceptibility.
We study temperature dependence of the topological susceptibility with the $N_{f}=2+1$ flavors Wilson fermion. We have two major interests in this paper. One is a comparison of gluonic and fermionic definitions of the topological susceptibility. Two
We study the impact of the Gradient Flow on the topology in various models of lattice field theory. The topological susceptibility $chi_{rm t}$ is measured directly, and by the slab method, which is based on the topological content of sub-volumes (sl
In lattice QCD with Wilson-type quarks, the chiral symmetry is explicitly broken by the Wilson term on finite lattices. Though the symmetry is guaranteed to recover in the continuum limit, a series of non-trivial procedures are required to recover th
We compute the topological charge and its susceptibility in finite temperature (2+1)-flavor QCD on the lattice applying a gradient flow method. With the Iwasaki gauge action and nonperturbatively $O(a)$-improved Wilson quarks, we perform simulations
The 2d O(3) model is widely used as a toy model for ferromagnetism and for Quantum Chromodynamics. With the latter it shares --- among other basic aspects --- the property that the continuum functional integral splits into topological sectors. Topolo