ﻻ يوجد ملخص باللغة العربية
The 2d O(3) model is widely used as a toy model for ferromagnetism and for Quantum Chromodynamics. With the latter it shares --- among other basic aspects --- the property that the continuum functional integral splits into topological sectors. Topology can also be defined in its lattice regularised version, but semi-classical arguments suggest that the topological susceptibility $chi_{rm t}$ does not scale towards a finite continuum limit. Previous numerical studies confirmed that the quantity $chi_{rm t}, xi^{2}$ diverges at large correlation length $xi$. Here we investigate the question whether or not this divergence persists when the configurations are smoothened by the Gradient Flow (GF). The GF destroys part of the topological windings; on fine lattices this strongly reduces $chi_{rm t}$. However, even when the flow time is so long that the GF impact range --- or smoothing radius --- attains $xi/2$, we do still not observe evidence of continuum scaling.
The 2d Heisenberg model --- or 2d O(3) model --- is popular in condensed matter physics, and in particle physics as a toy model for QCD. Along with other analogies, it shares with 4d Yang-Mills theories, and with QCD, the property that the configurat
We study the impact of the Gradient Flow on the topology in various models of lattice field theory. The topological susceptibility $chi_{rm t}$ is measured directly, and by the slab method, which is based on the topological content of sub-volumes (sl
We study temperature dependence of the topological susceptibility with the $N_{f}=2+1$ flavors Wilson fermion. We have two major interests in this paper. One is a comparison of gluonic and fermionic definitions of the topological susceptibility. Two
We consider the 2d XY Model with topological lattice actions, which are invariant against small deformations of the field configuration. These actions constrain the angle between neighbouring spins by an upper bound, or they explicitly suppress vorti
We study the O(3) sigma model in $D=2$ on the lattice with a Boltzmann weight linearized in $beta$ on each link. While the spin formulation now suffers from a sign-problem the equivalent loop model remains positive and becomes particularly simple. By