ﻻ يوجد ملخص باللغة العربية
Generic massive gravity models in the unitary gauge correspond to a self-gravitating medium with six degrees of freedom. It is widely believed that massive gravity models with six degrees of freedom have an unavoidable ghost-like instability; however, the corresponding medium has stable phonon-like excitations. The apparent contradiction is solved by the presence of a non-vanishing background pressure and energy density of the medium that opens up a stability window. The result is confirmed by looking at linear stability on an expanding Universe, recovering the flat space stability conditions in the small wavelength limit. Moreover, one can show that under rather mild conditions, no ghost-like instability is present for any wavelength. As a result, exploiting the medium interpretation, a generic massive gravity model with six degrees of freedom is perfectly viable.
The de Rham-Gabadadze-Tolley massive gravity admits pp-wave backgrounds on which linear fluctuations are shown to undergo time advances for all values of the parameters. The perturbations may propagate in closed time-like curves unless the parameter
We find new, simple cosmological solutions with flat, open, and closed spatial geometries, contrary to the previous wisdom that only the open model is allowed. The metric and the St{u}ckelberg fields are given explicitly, showing nontrivial configura
We investigate the cosmology of SO(3)-invariant massive gravity with 5 degrees of freedom. In contrast with previous studies, we allow for a non-trivial fiducial metric, which can be justified by invoking, for example, a dilaton-like global symmetry.
If the graviton is the only high spin particle present during inflation, then the form of the observable tensor three-point function is fixed by de Sitter symmetry at leading order in slow-roll, regardless of the theory, to be a linear combination of
We study the cosmic no-hair in the presence of spin-2 matter, i.e. in bimetric gravity. We obtain stable de Sitter solutions with the cosmological constant in the physical sector and find an evidence that the cosmic no-hair is correct. In the presenc