ﻻ يوجد ملخص باللغة العربية
To estimate direct and indirect effects of an exposure on an outcome from observed data strong assumptions about unconfoundedness are required. Since these assumptions cannot be tested using the observed data, a mediation analysis should always be accompanied by a sensitivity analysis of the resulting estimates. In this article we propose a sensitivity analysis method for parametric estimation of direct and indirect effects when the exposure, mediator and outcome are all binary. The sensitivity parameters consist of the correlation between the error terms of the mediator and outcome models, the correlation between the error terms of the mediator model and the model for the exposure assignment mechanism, and the correlation between the error terms of the exposure assignment and outcome models. These correlations are incorporated into the estimation of the model parameters and identification sets are then obtained for the direct and indirect effects for a range of plausible correlation values. We take the sampling variability into account through the construction of uncertainty intervals. The proposed method is able to assess sensitivity to both mediator-outcome confounding and confounding involving the exposure. To illustrate the method we apply it to a mediation study based on data from the Swedish Stroke Register (Riksstroke).
Sensitivity indices are commonly used to quantity the relative inuence of any specic group of input variables on the output of a computer code. In this paper, we focus both on computer codes the output of which is a cumulative distribution function a
The development of global sensitivity analysis of numerical model outputs has recently raised new issues on 1-dimensional Poincare inequalities. Typically two kind of sensitivity indices are linked by a Poincare type inequality, which provide upper b
We introduce a general method, named the h-function method, to unify the constructions of level-alpha exact test and 1-alpha exact confidence interval. Using this method, any confidence interval is improved as follows: i) an approximate interval, inc
The so-called polynomial chaos expansion is widely used in computer experiments. For example, it is a powerful tool to estimate Sobol sensitivity indices. In this paper, we consider generalized chaos expansions built on general tensor Hilbert basis.
In this paper, we introduce new indices adapted to outputs valued in general metric spaces. This new class of indices encompasses the classical ones; in particular, the so-called Sobol indices and the Cram{e}r-von-Mises indices. Furthermore, we provi