ترغب بنشر مسار تعليمي؟ اضغط هنا

Sensitivity analysis in general metric spaces

63   0   0.0 ( 0 )
 نشر من قبل Agnes Lagnoux
 تاريخ النشر 2020
  مجال البحث الاحصاء الرياضي
والبحث باللغة English
 تأليف Fabrice Gamboa




اسأل ChatGPT حول البحث

In this paper, we introduce new indices adapted to outputs valued in general metric spaces. This new class of indices encompasses the classical ones; in particular, the so-called Sobol indices and the Cram{e}r-von-Mises indices. Furthermore, we provide asymptotically Gaussian estimators of these indices based on U-statistics. Surprisingly, we prove the asymp-totic normality straightforwardly. Finally, we illustrate this new procedure on a toy model and on two real-data examples.



قيم البحث

اقرأ أيضاً

Sensitivity indices are commonly used to quantity the relative inuence of any specic group of input variables on the output of a computer code. In this paper, we focus both on computer codes the output of which is a cumulative distribution function a nd on stochastic computer codes. We propose a way to perform a global sensitivity analysis for these kinds of computer codes. In the rst setting, we dene two indices: the rst one is based on Wasserstein Fr{e}chet means while the second one is based on the Hoeding decomposition of the indicators of Wasserstein balls. Further, when dealing with the stochastic computer codes, we dene an ideal version of the stochastic computer code thats ts into the frame of the rst setting. Finally, we deduce a procedure to realize a second level global sensitivity analysis, namely when one is interested in the sensitivity related to the input distributions rather than in the sensitivity related to the inputs themselves. Several numerical studies are proposed as illustrations in the dierent settings.
66 - Lara Kassab 2019
Multidimensional scaling (MDS) is a popular technique for mapping a finite metric space into a low-dimensional Euclidean space in a way that best preserves pairwise distances. We study a notion of MDS on infinite metric measure spaces, along with its optimality properties and goodness of fit. This allows us to study the MDS embeddings of the geodesic circle $S^1$ into $mathbb{R}^m$ for all $m$, and to ask questions about the MDS embeddings of the geodesic $n$-spheres $S^n$ into $mathbb{R}^m$. Furthermore, we address questions on convergence of MDS. For instance, if a sequence of metric measure spaces converges to a fixed metric measure space $X$, then in what sense do the MDS embeddings of these spaces converge to the MDS embedding of $X$? Convergence is understood when each metric space in the sequence has the same finite number of points, or when each metric space has a finite number of points tending to infinity. We are also interested in notions of convergence when each metric space in the sequence has an arbitrary (possibly infinite) number of points.
150 - O Roustant 2019
The so-called polynomial chaos expansion is widely used in computer experiments. For example, it is a powerful tool to estimate Sobol sensitivity indices. In this paper, we consider generalized chaos expansions built on general tensor Hilbert basis. In this frame, we revisit the computation of the Sobol indices and give general lower bounds for these indices. The case of the eigenfunctions system associated with a Poincar{e} differential operator leads to lower bounds involving the derivatives of the analyzed function and provides an efficient tool for variable screening. These lower bounds are put in action both on toy and real life models demonstrating their accuracy.
Covariance matrix testing for high dimensional data is a fundamental problem. A large class of covariance test statistics based on certain averaged spectral statistics of the sample covariance matrix are known to obey central limit theorems under the null. However, precise understanding for the power behavior of the corresponding tests under general alternatives remains largely unknown. This paper develops a general method for analyzing the power behavior of covariance test statistics via accurate non-asymptotic power expansions. We specialize our general method to two prototypical settings of testing identity and sphericity, and derive sharp power expansion for a number of widely used tests, including the likelihood ratio tests, Ledoit-Nagao-Wolfs test, Cai-Mas test and Johns test. The power expansion for each of those tests holds uniformly over all possible alternatives under mild growth conditions on the dimension-to-sample ratio. Interestingly, although some of those tests are previously known to share the same limiting power behavior under spiked covariance alternatives with a fixed number of spikes, our new power characterizations indicate that such equivalence fails when many spikes exist. The proofs of our results combine techniques from Poincare-type inequalities, random matrices and zonal polynomials.
To estimate direct and indirect effects of an exposure on an outcome from observed data strong assumptions about unconfoundedness are required. Since these assumptions cannot be tested using the observed data, a mediation analysis should always be ac companied by a sensitivity analysis of the resulting estimates. In this article we propose a sensitivity analysis method for parametric estimation of direct and indirect effects when the exposure, mediator and outcome are all binary. The sensitivity parameters consist of the correlation between the error terms of the mediator and outcome models, the correlation between the error terms of the mediator model and the model for the exposure assignment mechanism, and the correlation between the error terms of the exposure assignment and outcome models. These correlations are incorporated into the estimation of the model parameters and identification sets are then obtained for the direct and indirect effects for a range of plausible correlation values. We take the sampling variability into account through the construction of uncertainty intervals. The proposed method is able to assess sensitivity to both mediator-outcome confounding and confounding involving the exposure. To illustrate the method we apply it to a mediation study based on data from the Swedish Stroke Register (Riksstroke).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا