ﻻ يوجد ملخص باللغة العربية
We introduce a general method, named the h-function method, to unify the constructions of level-alpha exact test and 1-alpha exact confidence interval. Using this method, any confidence interval is improved as follows: i) an approximate interval, including a point estimator, is modified to an exact interval; ii) an exact interval is refined to be an interval that is a subset of the previous one. Two real datasets are used to illustrate the method.
The recent paper Simple confidence intervals for MCMC without CLTs by J.S. Rosenthal, showed the derivation of a simple MCMC confidence interval using only Chebyshevs inequality, not CLT. That result required certain assumptions about how the estimat
Consider X_1,X_2,...,X_n that are independent and identically N(mu,sigma^2) distributed. Suppose that we have uncertain prior information that mu = 0. We answer the question: to what extent can a frequentist 1-alpha confidence interval for mu utilize this prior information?
In this paper, we show how concentration inequalities for Gaussian quadratic form can be used to propose exact confidence intervals of the Hurst index parametrizing a fractional Brownian motion. Both cases where the scaling parameter of the fractiona
To estimate direct and indirect effects of an exposure on an outcome from observed data strong assumptions about unconfoundedness are required. Since these assumptions cannot be tested using the observed data, a mediation analysis should always be ac
In the nonparametric Gaussian sequence space model an $ell^2$-confidence ball $C_n$ is constructed that adapts to unknown smoothness and Sobolev-norm of the infinite-dimensional parameter to be estimated. The confidence ball has exact and honest asym