ﻻ يوجد ملخص باللغة العربية
Ramsey theory is an active research area in combinatorics whose central theme is the emergence of order in large disordered structures, with Ramsey numbers marking the threshold at which this order first appears. For generalized Ramsey numbers $r(G,H)$, the emergent order is characterized by graphs $G$ and $H$. In this paper we: (i) present a quantum algorithm for computing generalized Ramsey numbers by reformulating the computation as a combinatorial optimization problem which is solved using adiabatic quantum optimization; and (ii) determine the Ramsey numbers $r(mathcal{T}_{m},mathcal{T}_{n})$ for trees of order $m,n = 6,7,8$, most of which were previously unknown.
The graph-theoretic Ramsey numbers are notoriously difficult to calculate. In fact, for the two-color Ramsey numbers $R(m,n)$ with $m,ngeq 3$, only nine are currently known. We present a quantum algorithm for the computation of the Ramsey numbers $R(
We prove an infinite Ramsey theorem for noncommutative graphs realized as unital self-adjoint subspaces of linear operators acting on an infinite dimensional Hilbert space. Specifically, we prove that if V is such a subspace, then provided there is n
We present generalized adiabatic theorems for closed and open quantum systems that can be applied to slow modulations of rapidly varying fields, such as oscillatory fields that occur in optical experiments and light induced processes. The generalized
We generalize Katos adiabatic theorem to nonunitary dynamics with an isospectral generator. This enables us to unify two strong-coupling limits: one driven by fast oscillations under a Hamiltonian, and the other driven by strong damping under a Lindb
Ramsey theory is a highly active research area in mathematics that studies the emergence of order in large disordered structures. Ramsey numbers mark the threshold at which order first appears and are extremely difficult to calculate due to their exp