ﻻ يوجد ملخص باللغة العربية
Traditional multiple input multiple output radars, which transmit orthogonal coded waveforms, suffer from range-azimuth resolution trade-off. In this work, we adopt a frequency division multiple access (FDMA) approach that breaks this conflict. We combine narrow individual bandwidth for high azimuth resolution and large overall total bandwidth for high range resolution. We process all channels jointly to overcome the FDMA range resolution limitation to a single bandwidth, and address range-azimuth coupling using a random array configuration.
Millimeter-wave radars are being increasingly integrated into commercial vehicles to support advanced driver-assistance system features. A key shortcoming for present-day vehicular radar imaging is poor azimuth resolution (for side-looking operation)
Dual-function radar-communication (DFRC) based on frequency hopping (FH) MIMO radar (FH-MIMO DFRC) achieves symbol rate much higher than radar pulse repetition frequency. Such DFRC, however, is prone to eavesdropping due to the spatially uniform illu
Future wireless communication systems are expected to explore spectral bands typically used by radar systems, in order to overcome spectrum congestion of traditional communication bands. Since in many applications radar and communication share the sa
Enabled by the advancement in radio frequency technologies, the convergence of radar and communication systems becomes increasingly promising and is envisioned as a key feature of future 6G networks. Recently, the frequency-hopping (FH) MIMO radar is
This paper proposes compressed domain signal processing (CSP) multiple input multiple output (MIMO) radar, a MIMO radar approach that achieves substantial sample complexity reduction by exploiting the idea of CSP. CSP MIMO radar involves two levels o