ترغب بنشر مسار تعليمي؟ اضغط هنا

Compressed-Domain Detection and Estimation for Colocated MIMO Radar

97   0   0.0 ( 0 )
 نشر من قبل Ehsan Tohidi Dr
 تاريخ النشر 2020
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper proposes compressed domain signal processing (CSP) multiple input multiple output (MIMO) radar, a MIMO radar approach that achieves substantial sample complexity reduction by exploiting the idea of CSP. CSP MIMO radar involves two levels of data compression followed by target detection at the compressed domain. First, compressive sensing is applied at the receive antennas, followed by a Capon beamformer which is designed to suppress clutter. Exploiting the sparse nature of the beamformer output, a second compression is applied to the filtered data. Target detection is subsequently conducted by formulating and solving a hypothesis testing problem at each grid point of the discretized angle space. The proposed approach enables an 8-fold reduction of the sample complexity in some settings as compared to a conventional compressed sensing (CS) MIMO radar thus enabling faster target detection. Receiver operating characteristic (ROC) curves of the proposed detector are provided. Simulation results show that the proposed approach outperforms recovery-based compressed sensing algorithms.



قيم البحث

اقرأ أيضاً

We consider a colocated MIMO radar scenario, in which the receive antennas forward their measurements to a fusion center. Based on the received data, the fusion center formulates a matrix which is then used for target parameter estimation. When the r eceive antennas sample the target returns at Nyquist rate, and assuming that there are more receive antennas than targets, the data matrix at the fusion center is low-rank. When each receive antenna sends to the fusion center only a small number of samples, along with the sample index, the receive data matrix has missing elements, corresponding to the samples that were not forwarded. Under certain conditions, matrix completion techniques can be applied to recover the full receive data matrix, which can then be used in conjunction with array processing techniques, e.g., MUSIC, to obtain target information. Numerical results indicate that good target recovery can be achieved with occupancy of the receive data matrix as low as 50%.
Frequency-hopping (FH) MIMO radar-based dual-function radar communication (FH-MIMO DFRC) enables communication symbol rate to exceed radar pulse repetition frequency, which requires accurate estimations of timing offset and channel parameters. The es timations, however, are challenging due to unknown, fast-changing hopping frequencies and the multiplicative coupling between timing offset and channel parameters. In this paper, we develop accurate methods for a single-antenna communication receiver to estimate timing offset and channel for FH-MIMO DFRC. First, we design a novel FH-MIMO radar waveform, which enables a communication receiver to estimate the hopping frequency sequence (HFS) used by radar, instead of acquiring it from radar. Importantly, the novel waveform incurs no degradation to radar ranging performance. Then, via capturing distinct HFS features, we develop two estimators for timing offset and derive mean squared error lower bound of each estimator. Using the bounds, we design an HFS that renders both estimators applicable. Furthermore, we develop an accurate channel estimation method, reusing the single hop for timing offset estimation. Validated by simulations, the accurate channel estimates attained by the proposed methods enable the communication performance of DFRC to approach that achieved based on perfect timing and ideal knowledge of channel.
Future wireless communication systems are expected to explore spectral bands typically used by radar systems, in order to overcome spectrum congestion of traditional communication bands. Since in many applications radar and communication share the sa me platform, spectrum sharing can be facilitated by joint design as dual function radar-communications system. In this paper, we propose a joint transmit beamforming model for a dual-function multiple-input-multiple-output (MIMO) radar and multiuser MIMO communication transmitter sharing the spectrum and an antenna array. The proposed dual-function system transmits the weighted sum of independent radar waveform and communication symbols, forming multiple beams towards the radar targets and the communication receivers, respectively. The design of the weighting coefficients is formulated as an optimization problem whose objective is the performance of the MIMO radar transmit beamforming, while guaranteeing that the signal-to-interference-plus-noise ratio (SINR) at each communication user is higher than a given threshold. Despite the non-convexity of the proposed optimization problem, it can be relaxed into a convex one, which can be solved in polynomial time, and we prove that the relaxation is tight. Then, we propose a reduced complexity design based on zero-forcing the inter-user interference and radar interference. Unlike previous works, which focused on the transmission of communication symbols to synthesize a radar transmit beam pattern, our method provides more degrees of freedom for MIMO radar and is thus able to obtain improved radar performance, as demonstrated in our simulation study. Furthermore, the proposed dual-function scheme approaches the radar performance of the radar-only scheme, i.e., without spectrum sharing, under reasonable communication quality constraints.
We propose a novel three-stage delay-Doppler-angle estimation algorithm for a MIMO-OFDM radar in the presence of inter-carrier interference (ICI). First, leveraging the observation that spatial covariance matrix is independent of target delays and Do pplers, we perform angle estimation via the MUSIC algorithm. For each estimated angle, we next formulate the radar delay-Doppler estimation as a joint carrier frequency offset (CFO) and channel estimation problem via an APES (amplitude and phase estimation) spatial filtering approach by transforming the delay-Doppler parameterized radar channel into an unstructured form. In the final stage, delay and Doppler of each target can be recovered from target-specific channel estimates over time and frequency. Simulation results illustrate the superior performance of the proposed algorithm in high-mobility scenarios.
Although routinely utilized in literature, orthogonal waveforms may lose orthogonality in distributed multi-input multi-output (MIMO) radar with spatially separated transmit (TX) and receive (RX) antennas, as the waveforms may experience distinct del ays and Doppler frequency offsets unique to different TX-RX propagation paths. In such cases, the output of each waveform-specific matched filter (MF), employed to unravel the waveforms at the RXs, contains both an auto term and multiple cross terms, i.e., the filtered response of the desired and, respectively, undesired waveforms. We consider the impact of non-orthogonal waveforms and their cross terms on target detection with or without timing, frequency, and phase errors. To this end, we present a general signal model for distributed MIMO radar, examine target detection using existing coherent/non-coherent detectors and two new detectors, including a hybrid detector that requires phase coherence locally but not across distributed antennas, and provide a statistical analysis leading to closed-form expressions of false alarm and detection probabilities for all detectors. Our results show that cross terms can behave like foes or allies, respectively, if they and the auto term add destructively or constructively, depending on the propagation delay, frequency, and phase offsets. Regarding sync errors, we show that phase errors affect only coherent detectors, frequency errors degrade all but the non-coherent detector, while all are impacted by timing errors, which result in a loss in the signal-to-noise ratio (SNR).
التعليقات (0)
لا يوجد تعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا