ﻻ يوجد ملخص باللغة العربية
Power domination in graphs arises from the problem of monitoring an electric power system by placing as few measurement devices in the system as possible. A power dominating set of a graph is a set of vertices that observes every vertex in the graph, following a set of rules for power system monitoring. A practical problem of interest is to determine the minimum number of additional measurement devices needed to monitor a power network when the network is expanded and the existing devices remain in place. In this paper, we study the problem of finding the smallest power dominating set that contains a given set of vertices X. We also study the related problem of finding the smallest zero forcing set that contains a given set of vertices X. The sizes of such sets in a graph G are respectively called the restricted power domination number and restricted zero forcing number of G subject to X. We derive several tight bounds on the restricted power domination and zero forcing numbers of graphs, and relate them to other graph parameters. We also present exact and algorithmic results for computing the restricted power domination number, including integer programs for general graphs and a linear time algorithm for graphs with bounded treewidth. We also use restricted power domination to obtain a parallel algorithm for finding minimum power dominating sets in trees.
The zero forcing number Z(G), which is the minimum number of vertices in a zero forcing set of a graph G, is used to study the maximum nullity / minimum rank of the family of symmetric matrices described by G. It is shown that for a connected graph o
Connections between vital linkages and zero forcing are established. Specifically, the notion of a rigid linkage is introduced as a special kind of unique linkage and it is shown that spanning forcing paths of a zero forcing process form a spanning r
Zero forcing is a combinatorial game played on a graph with a goal of turning all of the vertices of the graph black while having to use as few unforced moves as possible. This leads to a parameter known as the zero forcing number which can be used t
The power domination problem seeks to find the placement of the minimum number of sensors needed to monitor an electric power network. We generalize the power domination problem to hypergraphs using the infection rule from Bergen et al: given an init
Zero forcing is a combinatorial game played on a graph where the goal is to start with all vertices unfilled and to change them to filled at minimal cost. In the original variation of the game there were two options. Namely, to fill any one single ve