ﻻ يوجد ملخص باللغة العربية
The power domination problem seeks to find the placement of the minimum number of sensors needed to monitor an electric power network. We generalize the power domination problem to hypergraphs using the infection rule from Bergen et al: given an initial set of observed vertices, $S_0$, a set $Asubseteq S_0$ may infect an edge $e$ if $Asubseteq e$ and for any unobserved vertex $v$, if $Acup {v}$ is contained in an edge, then $vin e$. We combine a domination step with this infection rule to create emph{infectious power domination}. We compare this new parameter to the previous generalization by Chang and Roussel. We provide general bounds and determine the impact of some hypergraph operations.
Let $mathcal{H}$ be a hypergraph on a finite set $V$. A {em cover} of $mathcal{H}$ is a set of vertices that meets all edges of $mathcal{H}$. If $W$ is not a cover of $mathcal{H}$, then $W$ is said to be a {em noncover} of $mathcal{H}$. The {em nonco
Power domination in graphs arises from the problem of monitoring an electric power system by placing as few measurement devices in the system as possible. A power dominating set of a graph is a set of vertices that observes every vertex in the graph,
The $k$-power domination problem is a problem in graph theory, which has applications in many areas. However, it is hard to calculate the exact $k$-power domination number since determining k-power domination number of a generic graph is a NP-complet
The well-known notion of domination in a graph abstracts the idea of protecting locations with guards. This paper introduces a new graph invariant, the autonomous domination number, which abstracts the idea of defending a collection of locations with
We introduce a new bivariate polynomial ${displaystyle J(G; x,y):=sumlimits_{W in V(G)} x^{|W|}y^{|N(W)|}}$ which contains the standard domination polynomial of the graph $G$ in two different ways. We build methods for efficient calculation of this p