ﻻ يوجد ملخص باللغة العربية
The robustness of Bells inequality (in CHSH form) violation by entangled state in the simultaneous presence of colored and white noise in the system is considered. A twophoton polarization state is modeled by twoparameter density matrix. Setting parameter values one can vary the relative fraction of pure entangled Bells state as well as white and colored noise fractions. Bells operator-parameter dependence analysis is made. Computational results are compared with experimental data [quant-ph/0511265] and with results computed using a oneparameter density matrix [doi: 10.1103/PhysRevA.72.052112], which one can get as a special case of the model considered in this work.
A maximally entangled state is a quantum state which has maximum von Neumann entropy for each bipartition. Through proposing a new method to classify quantum states by using concurrences of pure states of a region, one can apply Bells inequality to s
Recently quantum nonlocality has been classified into three distinct types: quantum entanglement, Einstein-Podolsky-Rosen steering, and Bells nonlocality. Among which, Bells nonlocality is the strongest type. Bells nonlocality for quantum states is u
We study the nonlocal properties of states resulting from the mixture of an arbitrary entangled state rho of two d-dimensional systems and completely depolarized noise, with respective weights p and 1-p. We first construct a local model for the case
The entanglement swapping protocol is analyzed in a relativistic setting, where shortly after the entanglement swapping is performed, a Bell violation measurement is performed. From an observer in the laboratory frame, a Bell violation is observed du
Bell inequalities (BIs) derived in terms of quantum probability statistics are extended to general bipartite-entangled states of arbitrary spins with parallel polarization. The original formula of Bell for the two-spin singlet is slightly modified in