ﻻ يوجد ملخص باللغة العربية
A stationary and spherically symmetric black hole (For example, Reissner-Nordstrom black hole or Kerr-Newman black hole) has at most one singularity and two horizons. One horizon is the outer event horizon and the other is the inner Cauchy horizon. Can we construct static and spherically symmetric black hole solutions with N horizons and M singularities? De Sitter cosmos has only one apparent horizon. Can we construct cosmos solutions with N horizons? In this article, we present the static and spherically symmetric black hole and cosmos solutions with N horizons and M singularities in the vector-tensor theories. Following these motivations, we also construct the black hole solutions with a firewall. The deviation of these black hole solutions from the usual ones can be potentially tested by future measurements of gravitational waves.
We study closed photon orbits in spherically-symmetric static solutions of supergravity theories, a Horndeski theory, and a theory of quintessence. These orbits lie in what we shall call a photon sphere (anti-photon sphere) if the orbit is unstable (
We study the cosmology on the Friedmann-Lemaitre-Robertson-Walker background in scalar-vector-tensor theories with a broken $U(1)$ gauge symmetry. For parity-invariant interactions arising in scalar-vector-tensor theories with second-order equations
Along this review, we focus on the study of several properties of modified gravity theories, in particular on black-hole solutions and its comparison with those solutions in General Relativity, and on Friedmann-Lemaitre-Robertson-Walker metrics. The
We derive the odd parity perturbation equation in scalar-tensor theories with a non minimal kinetic coupling sector of the general Horndeski theory, where the kinetic term is coupled to the metric and the Einstein tensor. We derive the potential of t
We study a coupled dark energy scenario in which a massive vector field $A_{mu}$ with broken $U(1)$ gauge symmetry interacts with the four-velocity $u_c^{mu}$ of cold dark matter (CDM) through the scalar product $Z=-u_c^{mu} A_{mu}$. This new couplin