ترغب بنشر مسار تعليمي؟ اضغط هنا

Black holes, cosmological solutions, future singularities, and their thermodynamical properties in modified gravity theories

164   0   0.0 ( 0 )
 نشر من قبل Diego S\\'aez-G\\'omez
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Along this review, we focus on the study of several properties of modified gravity theories, in particular on black-hole solutions and its comparison with those solutions in General Relativity, and on Friedmann-Lemaitre-Robertson-Walker metrics. The thermodynamical properties of fourth order gravity theories are also a subject of this investigation with special attention on local and global stability of paradigmatic f(R) models. In addition, we revise some attempts to extend the Cardy-Verlinde formula, including modified gravity, where a relation between entropy bounds is obtained. Moreover, a deep study on cosmological singularities, which appear as a real possibility for some kind of modified gravity theories, is performed, and the validity of the entropy bounds is studied.



قيم البحث

اقرأ أيضاً

We investigate perturbations of a class of spherically symmetric solutions in massive gravity and bi-gravity. The background equations of motion for the particular class of solutions we are interested in reduce to a set of the Einstein equations with a cosmological constant. Thus, the solutions in this class include all the spherically symmetric solutions in general relativity, such as the Friedmann-Lema^{i}tre-Robertson-Walker solution and the Schwarzschild (-de Sitter) solution, though the one-parameter family of two parameters of the theory admits such a class of solutions. We find that the equations of motion for the perturbations of this class of solutions also reduce to the perturbed Einstein equations at first and second order. Therefore, the stability of the solutions coincides with that of the corresponding solutions in general relativity. In particular, these solutions do not suffer from non-linear instabilities which often appear in the other cosmological solutions in massive gravity and bi-gravity.
105 - J. W. Moffat 2020
A covariant modified gravity (MOG) is formulated by adding to general relativity two new degrees of freedom, a scalar field gravitational coupling strength $G= 1/chi$ and a gravitational spin 1 vector field $phi_mu$. The $G$ is written as $G=G_N(1+al pha)$ where $G_N$ is Newtons constant, and the gravitational source charge for the vector field is $Q_g=sqrt{alpha G_N}M$, where $M$ is the mass of a body. Cosmological solutions of the theory are derived in a homogeneous and isotropic cosmology. Black holes in MOG are stationary as the end product of gravitational collapse and are axisymmetric solutions with spherical topology. It is shown that the scalar field $chi$ is constant everywhere for an isolated black hole with asymptotic flat boundary condition. A consequence of this is that the scalar field loses its monopole moment radiation.
314 - Diego Saez-Gomez 2012
Modified f(R) gravity is one of the most promising candidates for dark energy, and even for the unification of the whole cosmological evolution, including the inflationary phase. Within this class of theories, the so-called viable modified gravities represent realistic theories that are capable of reproducing late-time acceleration, and satisfy strong constraints at local scales, where General Relativity is recovered. The present manuscript deals with the analysis of the cosmological evolution for some of these models, which indicates that the evolution may enter into a phantom phase, but the behavior may be asymptotically stable. Furthermore, the scalar-tensor equivalence of f(R) gravity is considered, which provides useful information about the possibility of the occurrence of a future singularity. The so-called Little Rip and Pseudo-Rip are also studied in the framework of this class of modified gravities.
134 - Diego Saez-Gomez 2012
One of the so-called viable modified gravities is analyzed. This kind of gravity theories are characterized by a well behavior at local scales, where General Relativity is recovered, while the modified terms become important at the cosmological level , where the late-time accelerating era is reproduced, and even the inflationary phase. In the present work, the future cosmological evolution for one of these models is studied. A transition to the phantom phase is observed. Furthermore, the scalar-tensor equivalence of f(R) gravity is also considered, which provides important information concerning this kind of models.
We analyze the propagation of high-frequency gravitational waves (GW) in scalar-tensor theories of gravity, with the aim of examining properties of cosmological distances as inferred from GW measurements. By using symmetry principles, we first determ ine the most general structure of the GW linearized equations and of the GW energy momentum tensor, assuming that GW move with the speed of light. Modified gravity effects are encoded in a small number of parameters, and we study the conditions for ensuring graviton number conservation in our covariant set-up. We then apply our general findings to the case of GW propagating through a perturbed cosmological space-time, deriving the expressions for the GW luminosity distance $d_L^{({rm GW})}$ and the GW angular distance $d_A^{({rm GW})}$. We prove for the first time the validity of Etherington reciprocity law $d_L^{({rm GW})},=,(1+z)^2,d_A^{({rm GW})}$ for a perturbed universe within a scalar-tensor framework. We find that besides the GW luminosity distance, also the GW angular distance can be modified with respect to General Relativity. We discuss implications of this result for gravitational lensing, focussing on time-delays of lensed GW and lensed photons emitted simultaneously during a multimessenger event. We explicitly show how modified gravity effects compensate between different coefficients in the GW time-delay formula: lensed GW arrive at the same time as their lensed electromagnetic counterparts, in agreement with causality constraints.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا