ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonminimal derivative coupling scalar-tensor theories: odd-parity perturbations and black hole stability

115   0   0.0 ( 0 )
 نشر من قبل Adolfo Cisterna A.C
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We derive the odd parity perturbation equation in scalar-tensor theories with a non minimal kinetic coupling sector of the general Horndeski theory, where the kinetic term is coupled to the metric and the Einstein tensor. We derive the potential of the perturbation, by identifying a master function and switching to tortoise coordinates. We then prove the mode stability under linear odd- parity perturbations of hairy black holes in this sector of Horndeski theory, when a cosmological constant term in the action is included. Finally, we comment on the existence of slowly rotating black hole solutions in this setup and discuss their implications on the physics of compact objects configurations, such as neutron stars.



قيم البحث

اقرأ أيضاً

In scalar-vector-tensor theories with $U(1)$ gauge invariance, it was recently shown that there exists a new type of hairy black hole (BH) solutions induced by a cubic-order scalar-vector interaction. In this paper, we derive conditions for the absen ce of ghosts and Laplacian instabilities against odd-parity perturbations on a static and spherically symmetric background for most general $U(1)$ gauge-invariant scalar-vector-tensor theories with second-order equations of motion. We apply those conditions to hairy BH solutions arising from the cubic-order coupling and show that the odd-parity stability in the gravity sector is always ensured outside the event horizon with the speed of gravity equivalent to that of light. We also study the case in which quartic-order interactions are present in addition to the cubic coupling and obtain conditions under which black holes are stable against odd-parity perturbations.
For a theory in which a scalar field $phi$ has a nonminimal derivative coupling to the Einstein tensor $G_{mu u}$ of the form $phi,G_{mu u} abla^{mu} abla^{ u} phi$, it is known that there exists a branch of static and spherically-symmetric relativ istic stars endowed with a scalar hair in their interiors. We study the stability of such hairy solutions with a radial field dependence $phi(r)$ against odd- and even-parity perturbations. We show that, for the star compactness ${cal C}$ smaller than $1/3$, they are prone to Laplacian instabilities of the even-parity perturbation associated with the scalar-field propagation along an angular direction. Even for ${cal C}>1/3$, the hairy star solutions are subject to ghost instabilities. We also find that even the other branch with a vanishing background field derivative is unstable for a positive perfect-fluid pressure, due to nonstandard propagation of the field perturbation $delta phi$ inside the star. Thus, there are no stable star configurations in derivative coupling theory without a standard kinetic term, including both relativistic and nonrelativistic compact objects.
We show that, independently of the scalar field potential and of specific asymptotic properties of the spacetime (asymptotically flat, de Sitter or anti-de Sitter), any static, spherically symmetric or planar, black hole or soliton solution of the Ei nstein theory minimally coupled to a real scalar field with a general potential is mode stable under linear odd-parity perturbations. To this end, we generalize the Regge-Wheeler equation for a generic self-interacting scalar field, and show that the potential of the relevant Schrodinger operator can be mapped, by the so-called S-deformation, to a semi-positively defined potential. With these results at hand we study the existence of slowly rotating configurations. The frame dragging effect is compared with the Kerr black hole.
In Einstein-Aether theory, we study the stability of black holes against odd-parity perturbations on a spherically symmetric and static background. For odd-parity modes, there are two dynamical degrees of freedom arising from the tensor gravitational sector and Aether vector field. We derive general conditions under which neither ghosts nor Laplacian instabilities are present for these dynamical fields. We apply these results to concrete black hole solutions known in the literature and show that some of those solutions can be excluded by the violation of stability conditions. The exact Schwarzschild solution present for $c_{13} = c_{14} = 0$, where $c_i$s are the four coupling constants of the theory with $c_{ij}=c_i + c_j$, is prone to Laplacian instabilities along the angular direction throughout the horizon exterior. However, we find that the odd-parity instability of high radial and angular momentum modes is absent for black hole solutions with $c_{13} = c_4 = 0$ and $c_1 geq 0$.
In scalar-vector-tensor (SVT) theories with parity invariance, we perform a gauge-ready formulation of cosmological perturbations on the flat Friedmann-Lema^{i}tre-Robertson-Walker (FLRW) background by taking into account a matter perfect fluid. We d erive the second-order action of scalar perturbations and resulting linear perturbation equations of motion without fixing any gauge conditions. Depending on physical problems at hand, most convenient gauges can be chosen to study the development of inhomogeneities in the presence of scalar and vector fields coupled to gravity. This versatile framework, which encompasses Horndeski and generalized Proca theories as special cases, is applicable to a wide variety of cosmological phenomena including nonsingular cosmology, inflation, and dark energy. By deriving conditions for the absence of ghost and Laplacian instabilities in several different gauges, we show that, unlike Horndeski theories, it is possible to evade no-go arguments for the absence of stable nonsingular bouncing/genesis solutions in both generalized Proca and SVT theories. We also apply our framework to the case in which scalar and vector fields are responsible for dark energy and find that the separation of observables relevant to the evolution of matter perturbations into tensor, vector, and scalar sectors is transparent in the unitary gauge. Unlike the flat gauge chosen in the literature, this result is convenient to confront SVT theories with observations associated with the cosmic growth history.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا