ﻻ يوجد ملخص باللغة العربية
This paper presents a new fast multipole boundary element method (FM-BEM) for solving the acoustic transmission problems in 2D periodic media. We divide the periodic media into many fundamental blocks, and then construct the boundary integral equations in the fundamental block. The fast multipole algorithm is proposed for the square and hexagon periodic systems, the convergence of the algorithm is analyzed. We then apply the proposed method to the acoustic transmission problems for liquid phononic crystals and derive the acoustic band gaps of the phononic crystals. By comparing the results with those from plane wave expansion method, we conclude that our method is efficient and accurate.
This paper is devoted to studying a type of contact problems modeled by hemivariational inequalities with small periodic coefficients appearing in PDEs, and the PDEs we considered are linear, second order and uniformly elliptic. Under the assumptions
Consider using the right-preconditioned generalized minimal residual (AB-GMRES) method, which is an efficient method for solving underdetermined least squares problems. Morikuni (Ph.D. thesis, 2013) showed that for some inconsistent and ill-condition
Accurate numerical simulations of interaction between fluid and solid play an important role in applications. The task is challenging in practical scenarios as the media are usually highly heterogeneous with very large contrast. To overcome this comp
In this paper, an efficient iterative method is proposed for solving multiple scattering problem in locally inhomogeneous media. The key idea is to enclose the inhomogeneity of the media by well separated artificial boundaries and then apply purely o
We adapt a symmetric interior penalty discontinuous Galerkin method using a patch reconstructed approximation space to solve elliptic eigenvalue problems, including both second and fourth order problems in 2D and 3D. It is a direct extension of the m