ﻻ يوجد ملخص باللغة العربية
Controlled chemical transformation of nanostructures is a promising technique to obtain precisely designed novel materials which are difficult to synthesize otherwise. We report high-temperature vapor phase anion exchange reactions to chemically transform II-VI semiconductor nanostructures (100-300 nm length scale) while retaining the single crystallinity, crystal structure, morphology and even defect distribution of the parent material via atomic templating. The concept of atomic templating is employed to obtain kinetically controlled, thermodynamically metastable structural phases such as zincblende CdSe and CdS from zincblende CdTe upon complete chemical replacement of Te with Se or S. The underlying transformation mechanisms are explained through first-principles density functional theory calculations. Atomic templating is a unique path to independently tune materials phase and composition at the nanoscale allowing synthesis of novel materials.
Using first-principles electronic structure calculations we identify the anion vacancies in II-VI and chalcopyrite Cu-III-VI2 semiconductors as a class of intrinsic defects that can exhibit metastable behavior. Specifically, we predict persistent ele
We have calculated the chemical trend of magnetic exchange parameters ($J_{dd}$, $N alpha$, and $N beta$) of Zn-based II-VI semiconductors ZnA (A=O, S, Se, and Te) doped with Co or Mn. We show that a proper treatment of electron correlations by the L
Assessing atomic defect states and their ramifications on the electronic properties of two dimensional van der Waals semiconducting transition metal dichalcogenides (SC TMDs) is the primary task to expedite multi disciplinary efforts in the promotion
Heteroepitaxial growth of selected group IV-VI nitrides on various orientations of sapphire (alpha-Al2O3) is demonstrated using atomic layer deposition. High quality, epitaxial films are produced at significantly lower temperatures than required by c
Structural transformation between metallic (1T) and semiconducting (2H) phases of single-layered MoS2 was systematically investigated by an in situ STEM with atomic precision. The 1T/2H phase transition is comprised of S and/or Mo atomic-plane glides