ترغب بنشر مسار تعليمي؟ اضغط هنا

Chemical trend of exchange couplings in diluted magnetic II-VI semiconductors

115   0   0.0 ( 0 )
 نشر من قبل Roland Hayn
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have calculated the chemical trend of magnetic exchange parameters ($J_{dd}$, $N alpha$, and $N beta$) of Zn-based II-VI semiconductors ZnA (A=O, S, Se, and Te) doped with Co or Mn. We show that a proper treatment of electron correlations by the LSDA+$U$ method leads to good agreement between experimental and theoretical values of the nearest-neighbor exchange coupling $J_{dd}$ between localized 3$d$ spins in contrast to the LSDA method. The exchange couplings between localized spins and doped electrons in the conduction band $N alpha$ are in good agreement with experiment as well. But the values for $N beta$ (coupling to doped holes in the valence band) indicate a cross-over from weak coupling (for A=Te and Se) to strong coupling (for A=O) and a localized hole state in ZnO:Mn. That hole localization explains the apparent discrepancy between photoemission and magneto-optical data for ZnO:Mn.



قيم البحث

اقرأ أيضاً

We employ density-functional theory (DFT) in the generalized gradient approximation (GGA) and its extensions GGA+$U$ and GGA+Gutzwiller to calculate the magnetic exchange couplings between pairs of Mn ions substituting Cd in a CdTe crystal at very sm all doping. DFT(GGA) overestimates the exchange couplings by a factor of three because it underestimates the charge-transfer gap in Mn-doped II-VI semiconductors. Fixing the nearest-neighbor coupling $J_1$ to its experimental value in GGA+$U$, in GGA+Gutzwiller, or by a simple scaling of the DFT(GGA) results provides acceptable values for the exchange couplings at 2nd, 3rd, and 4th neighbor distances in Cd(Mn)Te, Zn(Mn)Te, Zn(Mn)Se, and Zn(Mn)S. In particular, we recover the experimentally observed relation $J_4>J_2,J_3$. The filling of the Mn 3$d$-shell is not integer which puts the underlying Heisenberg description into question. However, using a few-ion toy model the picture of a slightly extended local moment emerges so that an integer $3d$-shell filling is not a prerequisite for equidistant magnetization plateaus, as seen in experiment.
113 - Quan Wang , Huiyuan Man , Cui Ding 2014
We report the synthesis and characterization of bulk form diluted magnetic semiconductors I-II-V Li1.1(Zn1-xCrx)As (x = 0.03, 0.05, 0.10, 0.15)with a cubic crystal structure identical to that of III-V GaAs and II-VI zinc-blende ZnSe. With p-type carr iers created by excess Li, 10% Cr substitution for Zn results in a ferromagnetic ordering below TC ~ 218 K. Li(Zn,Cr)As represents another magnetic semiconducting system with the advantage of decoupling carriers and spins, where carriers are created by adding extra Li and spins are introduced by Cr substitution for Zn.
We formulate a complete microscopic theory of a coupled pair of bound magnetic polarons, the bound-magnetic-polaron molecule (BMPM) in a diluted magnetic semiconductor (DMS) by taking into account both a proper two-body nature of the impurity-electro n wave function and within the general spin-rotation-invariant approach to the electronic states. We also take into account both the Heisenberg and the antiferromagnetic kinetic-exchange interactions, as well as the ferromagnetic coupling within the common spin BMPM cloud. The thermodynamic fluctuations of the spin cloud within the polaron effective Bohr radius of each polaron are taken as Gaussian.
289 - C. Timm , F. Schafer , 2001
In a recent Letter, Berciu and Bhatt have presented a mean-field theory of ferromagnetism in III-V semiconductors doped with manganese, starting from an impurity band model. We show that this approach gives an unphysically broad impurity band and is thus not appropriate for (Ga,Mn)As containing 1-5% Mn. We also point out a microscopically unmotivated sign change in the overlap integrals in the Letter. Without this sign change, stable ferromagnetism is not obtained.
122 - Jicai Lu , Huiyuan Man , Cui Ding 2013
The doping effect of Sr and transition metals Mn, Fe, Co into the direct-gap semiconductor LaZnAsO has been investigated. Our results indicate that the single phase ZrCuSiAs-type tetragonal crystal structure is preserved in (La1-xSrx)(Zn1-xTMx)AsO (T M = Mn, Fe, Co) with the doping level up to x = 0.1. While the system remains semiconducting, doping with Sr and Mn results in ferromagnetic order with TC ~ 30K, and doping with Sr and Fe results in a spin glass like state below ~6K with a saturation moment of ~0.02 muB/Fe, an order of magnitude smaller than the ~0.4 muB/Mn of Sr and Mn doped samples. The same type of magnetic state is observed neither for (Zn,Fe) substitution without carrier doping, nor for Sr and Co doped specimens.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا