ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectroscopic studies of atomic defects and bandgap renormalization in semiconducting monolayer transition metal dichalcogenides

186   0   0.0 ( 0 )
 نشر من قبل Suyong Jung
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Assessing atomic defect states and their ramifications on the electronic properties of two dimensional van der Waals semiconducting transition metal dichalcogenides (SC TMDs) is the primary task to expedite multi disciplinary efforts in the promotion of next generation electrical and optical device applications utilizing these low dimensional materials. Here, with electron tunneling and optical spectroscopy measurements with density functional theory, we spectroscopically locate the midgap states from chalcogen atom vacancies in four representative monolayer SC TMDs (MoS2, WS2, MoSe2, WSe2), and carefully analyze the similarities and dissimilarities of the atomic defects in four distinctive materials regarding the physical origins of the missing chalcogen atoms and the implications to SC mTMD properties. In addition, we address both quasiparticle and optical energy gaps of the SC mTMD films and find out many body interactions significantly enlarge the quasiparticle energy gaps and excitonic binding energies, when the semiconducting monolayers are encapsulated by non interacting hexagonal boron nitride layers.



قيم البحث

اقرأ أيضاً

Just as photons are the quanta of light, plasmons are the quanta of orchestrated charge-density oscillations in conducting media. Plasmon phenomena in normal metals, superconductors and doped semiconductors are often driven by long-wavelength Coulomb interactions. However, in crystals whose Fermi surface is comprised of disconnected pockets in the Brillouin zone, collective electron excitations can also attain a shortwave component when electrons transition between these pockets. Here, we show that the band structure of monolayer transition-metal dichalcogenides gives rise to an intriguing mechanism through which shortwave plasmons are paired up with excitons. The coupling elucidates the origin for the optical side band that is observed repeatedly in monolayers of WSe$_2$ and WS$_2$ but not understood. The theory makes it clear why exciton-plasmon coupling has the right conditions to manifest itself distinctly only in the optical spectra of electron-doped tungsten-based monolayers.
Recently, the celebrated Keldysh potential has been widely used to describe the Coulomb interaction of few-body complexes in monolayer transition-metal dichalcogenides. Using this potential to model charged excitons (trions), one finds a strong depen dence of the binding energy on whether the monolayer is suspended in air, supported on SiO$_2$, or encapsulated in hexagonal boron-nitride. However, empirical values of the trion binding energies show weak dependence on the monolayer configuration. This deficiency indicates that the description of the Coulomb potential is still lacking in this important class of materials. We address this problem and derive a new potential form, which takes into account the three atomic sheets that compose a monolayer of transition-metal dichalcogenides. The new potential self-consistently supports (i) the non-hydrogenic Rydberg series of neutral excitons, and (ii) the weak dependence of the trion binding energy on the environment. Furthermore, we identify an important trion-lattice coupling due to the phonon cloud in the vicinity of charged complexes. Neutral excitons, on the other hand, have weaker coupling to the lattice due to the confluence of their charge neutrality and small Bohr radius.
Atomically thin transition metal dichalcogenides (TMDs) are direct-gap semiconductors with strong light-matter and Coulomb interaction. The latter accounts for tightly bound excitons, which dominate the optical properties of these technologically pro mising materials. Besides the optically accessible bright excitons, these systems exhibit a variety of dark excitonic states. They are not visible in optical spectra, but can strongly influence the coherence lifetime and the linewidth of the emission from bright exciton states. In a recent study, an experimental evidence for the existence of such dark states has been demonstrated, as well as their strong impact on the quantum efficiency of light emission in TMDs. Here, we reveal the microscopic origin of the excitonic coherence lifetime in two representative TMD materials (WS$_2$ and MoSe$_2$) within a joint study combining microscopic theory with optical experiments. We show that the excitonic coherence lifetime is determined by phonon-induced intra- and intervalley scattering into dark excitonic states. Remarkably, and in accordance with the theoretical prediction, we find an efficient exciton relaxation in WS$_2$ through phonon emission at all temperatures.
87 - Hanan Dery 2016
Exciton optical transitions in transition-metal dichalcogenides offer unique opportunities to study rich many-body physics. Recent experiments in monolayer WSe$_2$ and WS$_2$ have shown that while the low-temperature photoluminescence from neutral ex citons and three-body complexes is suppressed in the presence of elevated electron densities or strong photoexcitation, new dominant peaks emerge in the low-energy side of the spectrum. I present a theory that elucidates the nature of these optical transitions showing the role of the intervalley Coulomb interaction. After deriving a compact dynamical form for the Coulomb potential, I calculate the self-energy of electrons due to their interaction with this potential. For electrons in the upper valleys of the spin-split conduction band, the self energy includes a moderate redshift due to exchange, and most importantly, a correlation-induced virtual state in the band-gap. The latter sheds light on the origin of the luminescence in monolayer WSe$_2$ and WS$_2$ in the presence of pronounced many-body interactions.
We present a many-body formalism for the simulation of time-resolved nonlinear spectroscopy and apply it to study the coherent interaction between excitons and trions in doped transition-metal dichalcogenides. Although the formalism can be straightfo rwardly applied in a first-principles manner, for simplicity we use a parameterized band structure and a static model dielectric function, both of which can be obtained from a calculation using the $GW$ approximation. Our simulation results shed light on the interplay between singlet and triplet trions in molybdenum- and tungsten-based compounds. Our two-dimensional electronic spectra are in excellent agreement with recent experiments and we accurately reproduce the beating of a cross-peak signal indicative of quantum coherence between excitons and trions. Although we confirm that the quantum beats in molybdenum-based monolayers unambigously reflect the exciton-trion coherence time, they are shown here to provide a lower-bound to the coherence time of tungsten analogues due to a destructive interference emerging from coexisting singlet and triplet trions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا