ترغب بنشر مسار تعليمي؟ اضغط هنا

Lattice mismatch as the descriptor of segregation, stability and reactivity of supported thin catalyst films

85   0   0.0 ( 0 )
 نشر من قبل Igor Pasti
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Edvin Fako




اسأل ChatGPT حول البحث

Increasing demand and high prices of advanced catalysts motivate a constant search for novel active materials with reduced content of noble metals. The development of thin films and core-shell catalysts seem to be a promising strategy along this path. Using Density Functional Theory we have analyzed a number of surface properties of supported bimetallic thin films with composition A3B (where A = Pt, Pd, B = Cu, Ag, Au). We focus on surface segregation, dissolution stability and surface electronic structure. We also address the chemisorption properties of Pd3Au thin films supported by different substrates, by probing the surface reactivity with CO. We find a strong influence of the support in the case of mono- and bilayers, while the surface strain seems to be the predominant factor in determining the surface properties of supported trilayers and thicker films. In particular, we show that the studied properties of the supported trilayers can be predicted from the lattice mismatch between the overlayer and the support. Namely, if the strain dependence of the corresponding quantities for pure strained surfaces is known, the properties of strained supported trilayers can be reliably estimated. The obtained results can be used in the design of novel catalysts and predictions of the surface properties of supported ultrathin catalyst layers.



قيم البحث

اقرأ أيضاً

Morphology of polymer electrolytes membranes (PEM), e.g., Nafion, inside PEM fuel cell catalyst layers has significant impact on the electrochemical activity and transport phenomena that determine cell performance. In those regions, Nafion can be fou nd as an ultra-thin film, coating the catalyst and the catalyst support surfaces. The impact of the hydrophilic/hydrophobic character of these surfaces on the structural formation of the films has not been sufficiently explored yet. Here, we report about Molecular Dynamics simulation investigation of the substrate effects on the ionomer ultra-thin film morphology at different hydration levels. We use a mean-field-like model we introduced in previous publications for the interaction of the hydrated Nafion ionomer with a substrate, characterized by a tunable degree of hydrophilicity. We show that the affinity of the substrate with water plays a crucial role in the molecular rearrangement of the ionomer film, resulting in completely different morphologies. Detailed structural description in different regions of the film shows evidences of strongly heterogeneous behavior. A qualitative discussion of the implications of our observations on the PEMFC catalyst layer performance is finally proposed.
We report a direct observation of segregation of gold atoms to the near surface regime due to 1.5 MeV Au2+ ion impact on isolated gold nanostructures deposited on silicon. Irradiation at fluences of 6x10^13, 1x10^14 and 5x10^14 ions cm-2 at a high be am flux of 6.3x1012 ions cm-2 s-1 show a maximum transported distance of gold atoms into the silicon substrate to be 60, 45 and 23 nm, respectively. At a lower fluence (6x1013 ions cm-2) transport has been found to be associated with the formation of gold silicide (Au5Si2). At a high fluence value of 5x10^14 ions cm-2, disassociation of gold silicide and out-diffusion lead to segregation of gold to defect - rich surface and interface region.
Development of novel materials may often require a rational use of high price components, like noble metals, in combination with the possibility to tune their properties in a desirable way. Here we present a theoretical DFT study of Au and Pd single atoms supported by doped MgO(001). By introducing B, C and N impurities into the MgO(001) surface, the interaction between the surface and the supported metal adatoms can be adjusted. Impurity atoms act as strong binding sites for Au and Pd adatoms and can help to produce highly dispersed metal particles. The reactivity of metal atoms supported by doped MgO(001), as probed by CO, is altered compared to their counterparts on pristine MgO(001). We find that Pd atoms on doped MgO(001) are less reactive than on perfect MgO(001). In contrast, Au adatoms bind CO much stronger when placed on doped MgO(001). In the case of Au on N-doped MgO(001) we find that charge redistribution between the metal atom and impurity takes place even when not in direct contact, which enhances the interaction of Au with CO. The presented results suggest possible ways for optimizing the reactivity of oxide supported metal catalysts through impurity engineering.
Cobalt nitride (Co-N) thin films prepared using a reactive magnetron sputtering process by varying the relative nitrogen gas flow (pn) are studied in this work. As pn~increases, Co(N), tcn, Co$_3$N and CoN phases are formed. An incremental increase i n pn, after emergence of tcn~phase at pn=10p, results in a continuous expansion in the lattice constant ($a$) of tcn. For pn=30p, $a$ maximizes and becomes comparable to its theoretical value. An expansion in $a$ of tcn, results in an enhancement of magnetic moment, to the extent that it becomes even larger than pure Co. Though such higher (than pure metal) magnetic moment for Fe$_4$N thin films have been theoretically predicted and evidenced experimentally, higher (than pure Co) magnetic moment are evidenced in this work and explained in terms of large-volume high-moment model for tetra metal nitrides.
Epitaxial (001) BiFeO3 thin films grown on vicinal SrTiO3 substrates are under large anisotropic stress from the substrates. The variations of the crystallographic tilt angle and the c lattice constant, caused by the lattice mismatch, along the film thickness were analyzed quantitatively using the X-ray diffraction technique. By generalizing the Nagai model, we estimated how step bunching resulted in the vertical lattice mismatch between adjacent BiFeO3 layers, which induced the strain relaxation and crystallographic tilt. The step bunching was confirmed by the increased terrace width on the BiFeO3 surface.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا