ﻻ يوجد ملخص باللغة العربية
Epitaxial (001) BiFeO3 thin films grown on vicinal SrTiO3 substrates are under large anisotropic stress from the substrates. The variations of the crystallographic tilt angle and the c lattice constant, caused by the lattice mismatch, along the film thickness were analyzed quantitatively using the X-ray diffraction technique. By generalizing the Nagai model, we estimated how step bunching resulted in the vertical lattice mismatch between adjacent BiFeO3 layers, which induced the strain relaxation and crystallographic tilt. The step bunching was confirmed by the increased terrace width on the BiFeO3 surface.
The structural and ferroelectric domain variants of highly-strained BiFeO3 films grown on vicinal LaSrAlO4 substrates were studied by piezoelectric force microscopy and high-resolution X-ray reciprocal space mapping. Through symmetry breaking of the
For more than three decades, measurement of terrace width distributions (TWDs) of vicinal crystal surfaces have been recognized as arguably the best way to determine the dimensionless strength $tilde{A}$ of the elastic repulsion between steps. For su
Increasing demand and high prices of advanced catalysts motivate a constant search for novel active materials with reduced content of noble metals. The development of thin films and core-shell catalysts seem to be a promising strategy along this path
We study current-induced step bunching and wandering instabilities with subsequent pattern formations on vicinal surfaces. A novel two-region diffusion model is developed, where we assume that there are different diffusion rates on terraces and in a
Ferroelectric BaTiO3 films with large polarization have been integrated with Si(001) by pulsed laser deposition. High quality c-oriented epitaxial films are obtained in a substrate temperature range of about 300 deg C wide. The deposition temperature