ترغب بنشر مسار تعليمي؟ اضغط هنا

Ion induced segregation in gold nanostructured thin films on silicon

111   0   0.0 ( 0 )
 نشر من قبل Jay Ghatak
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a direct observation of segregation of gold atoms to the near surface regime due to 1.5 MeV Au2+ ion impact on isolated gold nanostructures deposited on silicon. Irradiation at fluences of 6x10^13, 1x10^14 and 5x10^14 ions cm-2 at a high beam flux of 6.3x1012 ions cm-2 s-1 show a maximum transported distance of gold atoms into the silicon substrate to be 60, 45 and 23 nm, respectively. At a lower fluence (6x1013 ions cm-2) transport has been found to be associated with the formation of gold silicide (Au5Si2). At a high fluence value of 5x10^14 ions cm-2, disassociation of gold silicide and out-diffusion lead to segregation of gold to defect - rich surface and interface region.



قيم البحث

اقرأ أيضاً

225 - J. Ghatak 2008
Enhanced diffusion of gold atoms into silicon substrate has been studied in Au thin films of various thicknesses (2.0, 5.3, 10.9 and 27.5 nm) deposited on Si(111) and followed by irradiation with 1.5 MeV Au2+ at a flux of 6.3x10^12 ions cm-2 s-1 and fluence up to 1x10^15 ions cm-2. The high resolution transmission electron microscopy measurements showed the presence of gold silicide formation for the above-mentioned systems at fluence greater than equal to 1x1014 ions cm-2. The maximum depth to which the gold atoms have been diffused at a fluence of 1x10^14 ions cm-2 for the cases of 2.0, 5.3, 10.9 and 27.5 nm thick films has been found to be 60, 95, 160 and 13 nm respectively. Interestingly, at higher fluence of 1x1015 ions cm-2 in case of 27.5 nm thick film, gold atoms from the film transported to a maximum depth of 265 nm in the substrate. The substrate silicon is found to be amorphous at the above fluence values where unusually large mass transport occurred. Enhanced diffusion has been explained on the basis of ion beam induced, flux dependent amorphous nature of the substrate, and transient beam induced temperature effects. This work confirms the absence of confinement effects that arise from spatially confined structures and existence of thermal and chemical reactions during ion irradiation.
138 - J. Ghatak 2008
We discuss four important aspects of 1.5 MeV Au2+ ion-induced flux dependent sputtering from gold nanostrcutures (of an average size 7.6 nm and height 6.9 nm) that are deposited on silicon substrates: (a) Au sputtering yield at the ion flux of 6.3x10 ^12 ions cm-2 s-1 is found to be 312 atoms/ion which is about five times the sputtering yield reported earlier under identical irradiation conditions at a lower beam flux of 10^9 ions cm-2 s-1, (b) the sputtered yield increases with increasing flux at lower fluence and reduces at higher fluence (1.0x10^15 ions cm-2) for nanostructured thin films while the sputtering yield increases with increasing flux and fluence for thick films (27.5 nm Au deposited on Si) (c) Size distribution of sputtered particles has been found to vary with the incident beam flux showing a bimodal distribution at higher flux and (d) the decay exponent obtained from the size distributions of sputtered particles showed an inverse power law dependence ranging from 1.5 to 2.5 as a function of incident beam flux. The exponent values have been compared with existing theoretical models to understand the underlying mechanism. The role of wafer temperature associated with the beam flux has been invoked for a qualitative understanding of the sputtering results in both the nanostructured thin films and thick films.
We report about La0.67Sr0.33MnO3 single crystal manganite thin films in interaction with a gold capping layer. With respect to uncoated manganite layers of the same thickness, Au-capped 4 nm-thick manganite films reveal a dramatic reduction (about 18 5 K) of the Curie temperature TC and a lower saturation low-temperature magnetization M0. A sizeable TC reduction (about 60 K) is observed even when an inert SrTiO3 layer is inserted between the gold film and the 4 nm-thick manganite layer, suggesting that this effect might have an electrostatic origin.
The plasmonic properties of vacuum evaporated nanostructured gold thin films having different types of nanoparticles are presented. The films with more than 6 nm thickness show presence of nanorods having non cylindrical shape with triangular base. T wo characteristics plasmon bands have been recoreded in absorption spectra. First one occurs below 500 nm and other one at higher wavelength side. Both the peaks show dependence on the dielectric property of surroundings. The higher wavelength localized surface plasmon resonance (LSPR) peak shifts to higher wavelength with an increase in the nanoparticle size, surface roughness and refractive index of the surrounding (Methylene Blue dye coating). This shows that such thin films can be used as sensor for organic molecules with a refractive index sensitivity ranging from 250 - 305 nm/RIU (Refractive Index Unit).
Single-crystalline transition metal films are ideal playing fields for the epitaxial growth of graphene and graphene-base materials. Graphene-silicon layered structures were successfully constructed on Ir(111) thin film on Si substrate with an yttria -stabilized zirconia buffer layer via intercalation approach. Such hetero-layered structures are compatible with current Si-based microelectronic technique, showing high promise for applications in future micro- and nano-electronic devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا