ﻻ يوجد ملخص باللغة العربية
We report a direct observation of segregation of gold atoms to the near surface regime due to 1.5 MeV Au2+ ion impact on isolated gold nanostructures deposited on silicon. Irradiation at fluences of 6x10^13, 1x10^14 and 5x10^14 ions cm-2 at a high beam flux of 6.3x1012 ions cm-2 s-1 show a maximum transported distance of gold atoms into the silicon substrate to be 60, 45 and 23 nm, respectively. At a lower fluence (6x1013 ions cm-2) transport has been found to be associated with the formation of gold silicide (Au5Si2). At a high fluence value of 5x10^14 ions cm-2, disassociation of gold silicide and out-diffusion lead to segregation of gold to defect - rich surface and interface region.
Enhanced diffusion of gold atoms into silicon substrate has been studied in Au thin films of various thicknesses (2.0, 5.3, 10.9 and 27.5 nm) deposited on Si(111) and followed by irradiation with 1.5 MeV Au2+ at a flux of 6.3x10^12 ions cm-2 s-1 and
We discuss four important aspects of 1.5 MeV Au2+ ion-induced flux dependent sputtering from gold nanostrcutures (of an average size 7.6 nm and height 6.9 nm) that are deposited on silicon substrates: (a) Au sputtering yield at the ion flux of 6.3x10
We report about La0.67Sr0.33MnO3 single crystal manganite thin films in interaction with a gold capping layer. With respect to uncoated manganite layers of the same thickness, Au-capped 4 nm-thick manganite films reveal a dramatic reduction (about 18
The plasmonic properties of vacuum evaporated nanostructured gold thin films having different types of nanoparticles are presented. The films with more than 6 nm thickness show presence of nanorods having non cylindrical shape with triangular base. T
Single-crystalline transition metal films are ideal playing fields for the epitaxial growth of graphene and graphene-base materials. Graphene-silicon layered structures were successfully constructed on Ir(111) thin film on Si substrate with an yttria