ﻻ يوجد ملخص باللغة العربية
We consider ferromagnetic long-range Ising models which display phase transitions. They are long-range one-dimensional Ising ferromagnets, in which the interaction is given by $J_{x,y} = J(|x-y|)equiv frac{1}{|x-y|^{2-alpha}}$ with $alpha in [0, 1)$, in particular, $J(1)=1$. For this class of models one way in which one can prove the phase transition is via a kind of Peierls contour argument, using the adaptation of the Frohlich-Spencer contours for $alpha eq 0$, proposed by Cassandro, Ferrari, Merola and Presutti. As proved by Frohlich and Spencer for $alpha=0$ and conjectured by Cassandro et al for the region they could treat, $alpha in (0,alpha_{+})$ for $alpha_+=log(3)/log(2)-1$, although in the literature dealing with contour methods for these models it is generally assumed that $J(1)gg1$, we can show that this condition can be removed in the contour analysis. In addition, combining our theorem with a recent result of Littin and Picco we prove the persistence of the contour proof of the phase transition for any $alpha in [0,1)$. Moreover, we show that when we add a magnetic field decaying to zero, given by $h_x= h_*cdot(1+|x|)^{-gamma}$ and $gamma >max{1-alpha, 1-alpha^* }$ where $alpha^*approx 0.2714$, the transition still persists.
Inspired by Fr{o}hlich-Spencer and subsequent authors who introduced the notion of contour for long-range systems, we provide a definition of contour and a direct proof for the phase transition for ferromagnetic long-range Ising models on $mathbb{Z}^
We consider long-range self-avoiding walk, percolation and the Ising model on $mathbb{Z}^d$ that are defined by power-law decaying pair potentials of the form $D(x)asymp|x|^{-d-alpha}$ with $alpha>0$. The upper-critical dimension $d_{mathrm{c}}$ is $
In this paper, we convert the lattice configurations into networks with different modes of links and consider models on networks with arbitrary numbers of interacting particle-pairs. We solve the Heisenberg model by revealing the relation between the
This is a short review of the two papers on the $x$-space asymptotics of the critical two-point function $G_{p_c}(x)$ for the long-range models of self-avoiding walk, percolation and the Ising model on $mathbb{Z}^d$, defined by the translation-invari
In this paper, we investigate the behaviour of statistical physics models on a book with pages that are isomorphic to half-planes. We show that even for models undergoing a continuous phase transition on $mathbb Z^2$, the phase transition becomes dis