ترغب بنشر مسار تعليمي؟ اضغط هنا

Converting Lattices into Networks: The Heisenberg Model and Its Generalizations with Long-Range Interactions

88   0   0.0 ( 0 )
 نشر من قبل Chichun Zhou
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we convert the lattice configurations into networks with different modes of links and consider models on networks with arbitrary numbers of interacting particle-pairs. We solve the Heisenberg model by revealing the relation between the Casimir operator of the unitary group and the conjugacy-class operator of the permutation group. We generalize the Heisenberg model by this relation and give a series of exactly solvable models. Moreover, by numerically calculating the eigenvalue of Heisenberg models and random walks on network with different numbers of links, we show that a system on lattice configurations with interactions between more particle-pairs have higher degeneracy of eigenstates. The highest degeneracy of eigenstates of a lattice model is discussed.



قيم البحث

اقرأ أيضاً

We consider ferromagnetic long-range Ising models which display phase transitions. They are long-range one-dimensional Ising ferromagnets, in which the interaction is given by $J_{x,y} = J(|x-y|)equiv frac{1}{|x-y|^{2-alpha}}$ with $alpha in [0, 1)$, in particular, $J(1)=1$. For this class of models one way in which one can prove the phase transition is via a kind of Peierls contour argument, using the adaptation of the Frohlich-Spencer contours for $alpha eq 0$, proposed by Cassandro, Ferrari, Merola and Presutti. As proved by Frohlich and Spencer for $alpha=0$ and conjectured by Cassandro et al for the region they could treat, $alpha in (0,alpha_{+})$ for $alpha_+=log(3)/log(2)-1$, although in the literature dealing with contour methods for these models it is generally assumed that $J(1)gg1$, we can show that this condition can be removed in the contour analysis. In addition, combining our theorem with a recent result of Littin and Picco we prove the persistence of the contour proof of the phase transition for any $alpha in [0,1)$. Moreover, we show that when we add a magnetic field decaying to zero, given by $h_x= h_*cdot(1+|x|)^{-gamma}$ and $gamma >max{1-alpha, 1-alpha^* }$ where $alpha^*approx 0.2714$, the transition still persists.
We study - experimentally, theoretically, and numerically - nonlinear excitations in lattices of magnets with long-range interactions. We examine breather solutions, which are spatially localized and periodic in time, in a chain with algebraically-de caying interactions. It was established two decades ago [S. Flach, Phys. Rev. E 58, R4116 (1998)] that lattices with long-range interactions can have breather solutions in which the spatial decay of the tails has a crossover from exponential to algebraic decay. In this Letter, we revisit this problem in the setting of a chain of repelling magnets with a mass defect and verify, both numerically and experimentally, the existence of breathers with such a crossover.
175 - L. A. S. Mol , B. V. Costa 2013
In this work we have used extensive Monte Carlo calculations to study the planar to paramagnetic phase transition in the two-dimensional anisotropic Heisenberg model with dipolar interactions (AHd) considering the true long-range character of the dip olar interactions by means of the Ewald summation. Our results are consistent with an order-disorder phase transition with unusual critical exponents in agreement with our previous results for the Planar Rotator model with dipolar interactions. Nevertheless, our results disagrees with the Renormalization Group results of Maier and Schwabl [PRB, 70, 134430 (2004)] and the results of Rapini et. al. [PRB, 75, 014425 (2007)], where the AHd was studied using a cut-off in the evaluation of the dipolar interactions. We argue that besides the long-range character of dipolar interactions their anisotropic character may have a deeper effect in the system than previously believed. Besides, our results shows that the use of a cut-off radius in the evaluation of dipolar interactions must be avoided when analyzing the critical behavior of magnetic systems, since it may lead to erroneous results.
120 - N. Michel 2010
The Schrodinger equation incorporating the long-range Coulomb potential takes the form of a Fredholm equation whose kernel is singular on its diagonal when represented by a basis bearing a continuum of states, such as in a Fourier-Bessel transform. S everal methods have been devised to tackle this difficulty, from simply removing the infinite-range of the Coulomb potential with a screening or cut function to using discretizing schemes which take advantage of the integrable character of Coulomb kernel singularities. However, they have never been tested in the context of Berggren bases, which allow many-body nuclear wave functions to be expanded, with halo or resonant properties within a shell model framework. It is thus the object of this paper to test different discretization schemes of the Coulomb potential kernel in the framework of complex-energy nuclear physics. For that, the Berggren basis expansion of proton states pertaining to the sd-shell arising in the A ~ 20 region, being typically resonant, will be effected. Apart from standard frameworks involving a cut function or analytical integration of singularities, a new method will be presented, which replaces diagonal singularities by finite off-diagonal terms. It will be shown that this methodology surpasses in precision the two former techniques.
We consider the mean-field classical Heisenberg model and obtain detailed information about the total spin of the system by studying the model on a complete graph and sending the number of vertices to infinity. In particular, we obtain Cramer- and Sa nov-type large deviations principles for the total spin and the empirical spin distribution and demonstrate a second-order phase transition in the Gibbs measures. We also study the asymptotics of the total spin throughout the phase transition using Steins method, proving central limit theorems in the sub- and supercritical phases and a nonnormal limit theorem at the critical temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا