ﻻ يوجد ملخص باللغة العربية
In this paper, we convert the lattice configurations into networks with different modes of links and consider models on networks with arbitrary numbers of interacting particle-pairs. We solve the Heisenberg model by revealing the relation between the Casimir operator of the unitary group and the conjugacy-class operator of the permutation group. We generalize the Heisenberg model by this relation and give a series of exactly solvable models. Moreover, by numerically calculating the eigenvalue of Heisenberg models and random walks on network with different numbers of links, we show that a system on lattice configurations with interactions between more particle-pairs have higher degeneracy of eigenstates. The highest degeneracy of eigenstates of a lattice model is discussed.
We consider ferromagnetic long-range Ising models which display phase transitions. They are long-range one-dimensional Ising ferromagnets, in which the interaction is given by $J_{x,y} = J(|x-y|)equiv frac{1}{|x-y|^{2-alpha}}$ with $alpha in [0, 1)$,
We study - experimentally, theoretically, and numerically - nonlinear excitations in lattices of magnets with long-range interactions. We examine breather solutions, which are spatially localized and periodic in time, in a chain with algebraically-de
In this work we have used extensive Monte Carlo calculations to study the planar to paramagnetic phase transition in the two-dimensional anisotropic Heisenberg model with dipolar interactions (AHd) considering the true long-range character of the dip
The Schrodinger equation incorporating the long-range Coulomb potential takes the form of a Fredholm equation whose kernel is singular on its diagonal when represented by a basis bearing a continuum of states, such as in a Fourier-Bessel transform. S
We consider the mean-field classical Heisenberg model and obtain detailed information about the total spin of the system by studying the model on a complete graph and sending the number of vertices to infinity. In particular, we obtain Cramer- and Sa