ﻻ يوجد ملخص باللغة العربية
In this paper, we investigate the behaviour of statistical physics models on a book with pages that are isomorphic to half-planes. We show that even for models undergoing a continuous phase transition on $mathbb Z^2$, the phase transition becomes discontinuous as soon as the number of pages is sufficiently large. In particular, we prove that the Ising model on a three pages book has a discontinuous phase transition (if one allows oneself to consider large coupling constants along the line on which pages are glued). Our work confirms predictions in theoretical physics which relied on renormalization group, conformal field theory and numerics ([Car91,ITB91,SMP10]) some of which were motivated by the analysis of the Renyi entropy of certain quantum spin systems.
Inspired by Fr{o}hlich-Spencer and subsequent authors who introduced the notion of contour for long-range systems, we provide a definition of contour and a direct proof for the phase transition for ferromagnetic long-range Ising models on $mathbb{Z}^
We propose an actionable calibration procedure for general Quadratic Hawkes models of order book events (market orders, limit orders, cancellations). One of the main features of such models is to encode not only the influence of past events on future
This paper deals with $tilde{chi}^{(6)}$, the six-particle contribution to the magnetic susceptibility of the square lattice Ising model. We have generated, modulo a prime, series coefficients for $tilde{chi}^{(6)}$. The length of the series is suffi
In planar lattice statistical mechanics models like coupled Ising with quartic interactions, vertex and dimer models, the exponents depend on all the Hamiltonian details. This corresponds, in the Renormalization Group language, to a line of fixed poi
We investigate an extension of the quantum Ising model in one spatial dimension including long-range $1 / r^{alpha}$ interactions in its statics and dynamics with possible applications from heteronuclear polar molecules in optical lattices to trapped