ﻻ يوجد ملخص باللغة العربية
We consider subregion complexity within the AdS3/CFT2 correspondence. We rewrite the volume proposal, according to which the complexity of a reduced density matrix is given by the spacetime volume contained inside the associated Ryu-Takayanagi (RT) surface, in terms of an integral over the curvature. Using the Gauss-Bonnet theorem we evaluate this quantity for general entangling regions and temperature. In particular, we find that the discontinuity that occurs under a change in the RT surface is given by a fixed topological contribution, independent of the temperature or details of the entangling region. We offer a definition and interpretation of subregion complexity in the context of tensor networks, and show numerically that it reproduces the qualitative features of the holographic computation in the case of a random tensor network using its relation to the Ising model. Finally, we give a prescription for computing subregion complexity directly in CFT using the kinematic space formalism, and use it to reproduce some of our explicit gravity results obtained at zero temperature. We thus obtain a concrete matching of results for subregion complexity between the gravity and tensor network approaches, as well as a CFT prescription.
Four-dimensional (4D) flat Minkowski space admits a foliation by hyperbolic slices. Euclidean AdS3 slices fill the past and future lightcones of the origin, while dS3 slices fill the region outside the lightcone. The resulting link between 4D asympto
We investigate the evolution of complexity and entanglement following a quench in a one-dimensional topological system, namely the Su-Schrieffer-Heeger model. We demonstrate that complexity can detect quantum phase transitions and shows signatures of
Krylov complexity, or K-complexity for short, has recently emerged as a new probe of chaos in quantum systems. It is a measure of operator growth in Krylov space, which conjecturally bounds the operator growth measured by the out of time ordered corr
We develop a geometric approach to operator growth and Krylov complexity in many-body quantum systems governed by symmetries. We start by showing a direct link between a unitary evolution with the Liouvillian and the displacement operator of appropri
Perturbations of a class of semiclassical spiky strings in three dimensional Anti-de Sitter (AdS) spacetime, are investigated using the well-known Jacobi equations for small, normal deformations of an embedded timelike surface. We show that the equat