ﻻ يوجد ملخص باللغة العربية
Krylov complexity, or K-complexity for short, has recently emerged as a new probe of chaos in quantum systems. It is a measure of operator growth in Krylov space, which conjecturally bounds the operator growth measured by the out of time ordered correlator (OTOC). We study Krylov complexity in conformal field theories by considering arbitrary 2d CFTs, free field, and holographic models. We find that the bound on OTOC provided by Krylov complexity reduces to bound on chaos of Maldacena, Shenker, and Stanford. In all considered examples including free and rational CFTs Krylov complexity grows exponentially, in stark violation of the expectation that exponential growth signifies chaos.
We develop a geometric approach to operator growth and Krylov complexity in many-body quantum systems governed by symmetries. We start by showing a direct link between a unitary evolution with the Liouvillian and the displacement operator of appropri
Finding pure states in an enlarged Hilbert space that encode the mixed state of a quantum field theory as a partial trace is necessarily a challenging task. Nevertheless, such purifications play the key role in characterizing quantum information-theo
We develop a systematic approach to compute the subsystem trace distances and relative entropies for subsystem reduced density matrices associated to excited states in different symmetry sectors of a 1+1 dimensional conformal field theory having an i
We present an analytic calculation of the layer (parallel) susceptibility at the extraordinary transition in a semi-infinite system with a flat boundary. Using the method of integral transforms put forward by McAvity and Osborn [Nucl. Phys. B 455 (19
We discuss consequences of the breaking of conformal symmetry by a flat or spherical extended operator. We adapt the embedding formalism to the study of correlation functions of symmetric traceless tensors in the presence of the defect. Two-point fun