ﻻ يوجد ملخص باللغة العربية
Perturbations of a class of semiclassical spiky strings in three dimensional Anti-de Sitter (AdS) spacetime, are investigated using the well-known Jacobi equations for small, normal deformations of an embedded timelike surface. We show that the equation for the perturbation scalar which governs the behaviour of such small deformations, is a special case of the well-known Darboux-Treibich-Verdier (DTV) equation. The eigenvalues and eigensolutions of the DTV equation for our case are obtained by solving certain continued fractions numerically. These solutions are thereafter utilised to further demonstrate that there do exist finite perturbations of the AdS spiky strings. Our results therefore establish that the spiky string configurations in AdS3 are indeed stable against small fluctuations. Comments on future possibilities of work are included in conclusion.
The main purpose of the report is to provide some argumentation that three seemingly distinct approaches of 1. Giveon, Kutasov and Seiberg (hep-th/9806194); 2. Hemming, Keski-Vakkuri (hep-th/0110252); Maldacena, Ooguri (hep-th/0001053) and 3. I. Bars
We use the recipe of arXiv:1003.2974 to find half-BPS near-horizon geometries in the t$^3$ model of $N=2$, $D=4$ gauged supergravity, and explicitely construct some new examples. Among these are black holes with noncompact horizons, but also with sph
We study a giant magnon and a spike solution for the string rotating on AdS(4) X CP**3 geometry. We consider rigid rotating fundamental string in the SU(2) X SU(2) sector inside the CP**3 and find out the general form of all the conserved charges. We
We study general rotating string solution in the AdS(4) X CP**3 background with a B_NS holonomy turned on over ${bf CP}^1$ $subset $ $ {bf CP}^3$. We find the giant magnon and single spike solutions for the string moving in this background correspond
We study chaotic motion of classical closed strings in the five-dimensional Anti-de Sitter (AdS) soliton spacetime. We first revisit classical chaos using a cohomogeneity-1 string ansatz. We then consider turbulent behaviors of the classical strings