ﻻ يوجد ملخص باللغة العربية
With reduced dimensionality, it is often easier to modify the properties of ultra-thin films than their bulk counterparts. Strain engineering, usually achieved by choosing appropriate substrates, has been proven effective in controlling the properties of perovskite oxide films. An emerging alternative route for developing new multifunctional perovskite is by modification of the oxygen octahedral structure. Here we report the control of structural oxygen octahedral rotation in ultra-thin perovskite SrRuO3 films by the deposition of a SrTiO3 capping layer, which can be lithographically patterned to achieve local control. Using a scanning Sagnac magnetic microscope, we show increase in the Curie temperature of SrRuO3 due to the suppression octahedral rotations revealed by the synchrotron x-ray diffraction. This capping-layer-based technique may open new possibilities for developing functional oxide materials.
Epitaxial strain is a proven route to enhancing the properties of complex oxides, however, the details of how the atomic structure accommodates strain are poorly understood due to the difficulty of measuring the oxygen positions in thin films. We pre
We introduce a dinstint approach to engineer a topologically protected surface state of a topological insulator. By covering the surface of a topological insulator, Bi2Te2Se, with a Bi monolayer film, the original surface state is completely removed
The Curie temperature is one of the most fundamental physical properties of ferromagnetic materials and can be described by Weiss molecular field theory with the exchange interaction of neighboring atoms. Recently, the electric-field-induced modulati
We study the ultrafast demagnetization of Ni/NiMn and Co/NiMn ferromagnetic/antiferromagnetic bilayer systems after excitation by a laser pulse. We probe the ferromagnetic order of Ni and Co using magnetic circular dichroism in time-resolved pump--pr
Using first principle calculations we showed that the Curie temperature of manganites thin films can be increased by far more than an order of magnitude by applying appropriate strains. Our main breakthrough is that the control of the orbital orderin