ﻻ يوجد ملخص باللغة العربية
We introduce a dinstint approach to engineer a topologically protected surface state of a topological insulator. By covering the surface of a topological insulator, Bi2Te2Se, with a Bi monolayer film, the original surface state is completely removed and three new spin helical surface states, originating from the Bi film, emerge with different dispersion and spin polarization, through a strong electron hybridization. These new states play the role of topological surface states keeping the bulk topological nature intact. This mechanism provides a way to create various different types of topologically protected electron channels on top of a single topological insulator, possibly with tailored properties for various applications.
Topological insulators are bulk insulators with exotic surface states, protected under time-reversal symmetry, that hold promise in observing many exciting condensed-matter phenomena. In this report, we show that by having a topological insulator (Bi
The protected electron states at the boundaries or on the surfaces of topological insulators (TIs) have been the subject of intense theoretical and experimental investigations. Such states are enforced by very strong spin-orbit interaction in solids
The surface of topological insulators is proposed as a promising platform for spintronics and quantum information applications. In particular, when time- reversal symmetry is broken, topological surface states are expected to exhibit a wide range of
We predict that unpolarized charge current injected into a ballistic thin film of prototypical topological insulator (TI) Bi$_2$Se$_3$ will generate a {it noncollinear spin texture} $mathbf{S}(mathbf{r})$ on its surface. Furthermore, the nonequilibri
We studied the Ag-intercalated 3D topological insulator Bi$_{2}$Se$_{3}$ by scanning tunneling microscopy/spectroscopy and angle-resolved photoemission spectroscopy, combined with a first principles calculations. We demonstrate that silver atoms depo