ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantifying octahedral rotations in strained perovskite oxide films

589   0   0.0 ( 0 )
 نشر من قبل Steven May
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Epitaxial strain is a proven route to enhancing the properties of complex oxides, however, the details of how the atomic structure accommodates strain are poorly understood due to the difficulty of measuring the oxygen positions in thin films. We present a general methodology for determining the atomic structure of strained oxide films via x-ray diffraction, which we demonstrate using LaNiO3 films. The oxygen octahedral rotations and distortions have been quantified by comparing the intensities of half-order Bragg peaks, arising from the two unit cell periodicity of the octahedral rotations, with the calculated structure factor. Combining ab initio density functional calculations with these experimental results, we determine systematically how strain modifies the atomic structure of this functional oxide.



قيم البحث

اقرأ أيضاً

We report the relationship between epitaxial strain and the crystallographic orientation of the in-phase rotation axis and A-site displacements in Pbnm-type perovskite films. Synchrotron diffraction measurements of EuFeO3 films under strain states ra nging from 2% compressive to 0.9% tensile on cubic or rhombohedral substrates exhibit a combination of a-a+c- and a+a-c- rotational patterns. We compare the EuFeO3 behavior with previously reported experimental and theoretical work on strained Pbnm-type films on non-orthorhombic substrates, as well as additional measurements from LaGaO3, LaFeO3, and Eu0.7Sr0.3MnO3 films on SrTiO3. Compiling the results from various material systems reveals a general strain dependence in which compressive strain strongly favors a-a+c- and a+a-c- rotation patterns and tensile strain weakly favors a-a-c+ structures. In contrast, EuFeO3 films grown on Pbnm-type GdScO3 under 2.3% tensile strain take on a uniform a-a+c- rotation pattern imprinted from the substrate, despite strain energy considerations that favor the a-a-c+ pattern. These results point to the use of substrate imprinting as a more robust route than strain for tuning the crystallographic orientations of the octahedral rotations and A-site displacements needed to realize rotation-induced hybrid improper ferroelectricity in oxide heterostructures.
Rotation of MO6 (M = transition metal) octahedra is a key determinant of the physical properties of perovskite materials. Therefore, tuning physical properties, one of the most important goals in condensed matter research, may be accomplished by cont rolling octahedral rotation (OR). In this study, it is demonstrated that OR can be driven by an electric field in Sr$_2$RuO$_4$. Rotated octahedra in the surface layer of Sr$_2$RuO$_4$ are restored to the unrotated bulk structure upon dosing the surface with K. Theoretical investigation shows that OR in Sr$_2$RuO$_4$ originates from the surface electric field, which can be tuned via the screening effect of the overlaid K layer. This work establishes not only that variation in the OR angle can be induced by an electric field, but also provides a way to control OR, which is an important step towards in situ control of the physical properties of perovskite oxides.
Oxygen octahedral rotations have been measured in short-period (LaNiO$_3$)$_n$/(SrMnO$_3$)$_m$ superlattices using synchrotron diffraction. The in-plane and out-of-plane bond angles and lengths are found to systematically vary with superlattice compo sition. Rotations are suppressed in structures with $m>n$, producing a nearly cubic form of LaNiO$_3$. Large rotations are present in structures with $m<n$, leading to reduced bond angles in SrMnO$_3$. The metal-oxygen-metal bond lengths decrease as rotations are reduced, in contrast to behavior previously observed in strained, single layer films. This result demonstrates that superlattice structures can be used to stabilize non-equilibrium octahedral behavior in a manner distinct from epitaxial strain, providing a novel means to engineer the electronic and ferroic properties of oxide heterostructures.
Determining the 3-dimensional crystallography of a material with sub-nanometre resolution is essential to understanding strain effects in epitaxial thin films. A new scanning transmission electron microscopy imaging technique is demonstrated that vis ualises the presence and strength of atomic movements leading to a period doubling of the unit cell along the beam direction, using the intensity in an extra Laue zone ring in the back focal plane recorded using a pixelated detector method. This method is used together with conventional atomic resolution imaging in the plane perpendicular to the beam direction to gain information about the 3D crystal structure in an epitaxial thin film of LaFeO3 sandwiched between a substrate of (111) SrTiO3 and a top layer of La0.7Sr0.3MnO3. It is found that a hitherto unreported structure of LaFeO3 is formed under the unusual combination of compressive strain and (111) growth, which is triclinic with a periodicity doubling from primitive perovskite along one of the three <110> directions lying in the growth plane. This results from a combination of La-site modulation along the beam direction, and modulation of oxygen positions resulting from octahedral tilting. This transition to the period-doubled cell is suppressed near both the substrate and near the La0.7Sr0.3MnO3 top layer due to the clamping of the octahedral tilting by the absence of tilting in the substrate and due to an incompatible tilt pattern being present in the La0.7Sr0.3MnO3 layer. This work shows a rapid and easy way of scanning for such transitions in thin films or other systems where disorder-order transitions or domain structures may be present and does not require the use of atomic resolution imaging, and could be done on any scanning TEM instrument equipped with a suitable camera.
Nuclear site analysis methods are used to enumerate the normal modes of $ABX_{3}$ perovskite polymorphs with octahedral rotations. We provide the modes of the fourteen subgroups of the cubic aristotype describing the Glazer octahedral tilt patterns, which are obtained from rotations of the $BX_{6}$ octahedra with different sense and amplitude about high symmetry axes. We tabulate all normal modes of each tilt system and specify the contribution of each atomic species to the mode displacement pattern, elucidating the physical meaning of the symmetry unique modes. We have systematically generated 705 schematic atomic displacement patterns for the normal modes of all 15 (14 rotated + 1 unrotated) Glazer tilt systems. We show through some illustrative examples how to use these tables to identify the octahedral rotations, symmetric breathing, and first-order Jahn-Teller anti-symmetric breathing distortions of the $BX_{6}$ octahedra, and the associated Raman selection rules. We anticipate that these tables and schematics will be useful in understanding the lattice dynamics of bulk perovskites and would serve as reference point in elucidating the atomic origin of a wide range of physical properties in synthetic perovskite thin films and superlattices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا