ﻻ يوجد ملخص باللغة العربية
This paper is concerned with diffusive approximations of peculiar numerical schemes for several linear (or weakly nonlinear) kinetic models which are motivated by wide-range applications, including radiative transfer or neutron transport, run-and-tumble models of chemotaxis dynamics, and Vlasov-Fokker-Planck plasma modeling. The well-balanced method applied to such kinetic equations leads to time-marching schemes involving a scattering S-matrix , itself derived from a normal modes decomposition of the stationary solution. One common feature these models share is the type of diffusive approximation: their macroscopic densities solve drift-diffusion systems, for which a distinguished numerical scheme is Ilin/Scharfetter-Gummels exponential fitting discretization. We prove that the well-balanced schemes relax, within a parabolic rescaling, towards the Ilin exponential-fitting discretization by means of an appropriate decomposition of the S-matrix. This is the so-called asymptotic preserving (or uniformly accurate) property.
This paper is devoted to diffusion limits of linear Boltzmann equations. When the equilibrium distribution function is Maxwellian distribution, it is well known that for an appropriate time scale, the small mean free path limit gives rise to a diffus
Kinetic-transport equations that take into account the intra-cellular pathways are now considered as the correct description of bacterial chemotaxis by run and tumble. Recent mathematical studies have shown their interest and their relations to more
We discuss a method to construct Dirac-harmonic maps developed by J.~Jost, X.~Mo and M.~Zhu in J.~Jost, X.~Mo, M.~Zhu, emph{Some explicit constructions of Dirac-harmonic maps}, J. Geom. Phys. textbf{59} (2009), no. 11, 1512--1527.The method uses harm
In this paper we present and implement the Palindromic Discontinuous Galerkin (PDG) method in dimensions higher than one. The method has already been exposed and tested in [4] in the one-dimensional context. The PDG method is a general implicit high
We investigate the numerical discretization of a two-stream kinetic system with an internal state, such system has been introduced to model the motion of cells by chemotaxis. This internal state models the intracellular methylation level. It adds a v