ﻻ يوجد ملخص باللغة العربية
In this paper we present and implement the Palindromic Discontinuous Galerkin (PDG) method in dimensions higher than one. The method has already been exposed and tested in [4] in the one-dimensional context. The PDG method is a general implicit high order method for approximating systems of conservation laws. It relies on a kinetic interpretation of the conservation laws containing stiff relaxation terms. The kinetic system is approximated with an asymptotic-preserving high order DG method. We describe the parallel implementation of the method, based on the StarPU runtime library. Then we apply it on preliminary test cases.
We put forward and analyze an explicit finite difference scheme for the Camassa-Holm shallow water equation that can handle general $H^1$ initial data and thus peakon-antipeakon interactions. Assuming a specified condition restricting the time step i
We consider nonlinear hyperbolic conservation laws, posed on a differential (n+1)-manifold with boundary referred to as a spacetime, and in which the flux is defined as a flux field of n-forms depending on a parameter (the unknown variable). We intro
In this paper, we develop an operator splitting scheme for the fractional kinetic Fokker-Planck equation (FKFPE). The scheme consists of two phases: a fractional diffusion phase and a kinetic transport phase. The first phase is solved exactly using t
We consider a mono-dimensional two-velocities scheme used to approximate the solutions of a scalar hyperbolic conservative partial differential equation. We prove the convergence of the discrete solution toward the unique entropy solution by first es
An efficient implicit kinetic scheme is developed to solve the stationary phonon Boltzmann transport equation (BTE) based on the non-gray model including the phonon dispersion and polarization. Due to the wide range of the dispersed phonon mean free