ﻻ يوجد ملخص باللغة العربية
We investigate the numerical discretization of a two-stream kinetic system with an internal state, such system has been introduced to model the motion of cells by chemotaxis. This internal state models the intracellular methylation level. It adds a variable in the mathematical model, which makes it more challenging to simulate numerically. Moreover, it has been shown that the macroscopic or mesoscopic quantities computed from this system converge to the Keller-Segel system at diffusive scaling or to the velocity-jump kinetic system for chemotaxis at hyperbolic scaling. Then we pay attention to propose numerical schemes uniformly accurate with respect to the scaling parameter. We show that these schemes converge to some limiting schemes which are consistent with the limiting macroscopic or kinetic system. This study is illustrated with some numerical simulations and comparisons with Monte Carlo simulations.
In this paper, we develop an operator splitting scheme for the fractional kinetic Fokker-Planck equation (FKFPE). The scheme consists of two phases: a fractional diffusion phase and a kinetic transport phase. The first phase is solved exactly using t
Numerical solutions of the cosmic-ray (CR) magneto-hydrodynamic equations are dogged by a powerful numerical instability, which arises from the constraint that CRs can only stream down their gradient. The standard cure is to regularize by adding arti
We study the long time behaviour of the kinetic Fokker-Planck equation with mean field interaction, whose limit is often called Vlasov-Fkker-Planck equation. We prove a uniform (in the number of particles) exponential convergence to equilibrium for t
In this paper we present and implement the Palindromic Discontinuous Galerkin (PDG) method in dimensions higher than one. The method has already been exposed and tested in [4] in the one-dimensional context. The PDG method is a general implicit high
We present a positive and asymptotic preserving numerical scheme for solving linear kinetic, transport equations that relax to a diffusive equation in the limit of infinite scattering. The proposed scheme is developed using a standard spectral angula