ﻻ يوجد ملخص باللغة العربية
A recent paper [M. H. Lee, Phys. Rev. Lett. 98, 190601 (2007)] has called attention to the fact that irreversibility is a broader concept than ergodicity, and that therefore the Khinchin theorem [A. I. Khinchin, Mathematical Foundations of Statistical Mechanics (Dover, New York) 1949] may fail in some systems. In this Letter we show that for all ranges of normal and anomalous diffusion described by a Generalized Langevin Equation the Khinchin theorem holds.
Recent investigations call attention to the dynamics of anomalous diffusion and its connection with basic principles of statistical mechanics. We present here a short review of those ideas and their implications.
Motivated by electronic transport in graphene-like structures, we study the diffusion of a classical point particle in Fermi potentials situated on a triangular lattice. We call this system a soft Lorentz gas, as the hard disks in the conventional pe
The problem of biological motion is a very intriguing and topical issue. Many efforts are being focused on the development of novel modeling approaches for the description of anomalous diffusion in biological systems, such as the very complex and het
We address this work to investigate some statistical properties of symbolic sequences generated by a numerical procedure in which the symbols are repeated following a power law probability density. In this analysis, we consider that the sum of n symb
We generalize the reaction-diffusion model A + B -> 0 in order to study the impact of an excess of A (or B) at the reaction front. We provide an exact solution of the model, which shows that linear response breaks down: the average displacement of th