ﻻ يوجد ملخص باللغة العربية
This paper gives the definitions of an extra superincreasing sequence and an anomalous subset sum, and proposes a fast quantum-safe asymmetric cryptosystem called JUOAN2. The new cryptosystem is based on an additive multivariate permutation problem (AMPP) and an anomalous subset sum problem (ASSP) which parallel a multivariate polynomial problem and a shortest vector problem respectively, and composed of a key generator, an encryption algorithm, and a decryption algorithm. The authors analyze the security of the new cryptosystem against the Shamir minima accumulation point attack and the LLL lattice basis reduction attack, and prove it to be semantically secure (namely IND-CPA) on the assumption that AMPP and ASSP have no subexponential time solutions. Particularly, the analysis shows that the new cryptosystem has the potential to be resistant to quantum computing attack, and is especially suitable to the secret communication between two mobile terminals in maneuvering field operations under any weather. At last, an example explaining the correctness of the new cryptosystem is given.
At Eurocrypt99, Paillier presented a public-key cryptosystem based on a novel computational problem. It has interested many researchers because it was additively homomorphic. In this paper, we show that there is a big difference between the original
In this paper, we propose a known-plaintext attack (KPA) method based on deep learning for traditional chaotic encryption scheme. We employ the convolutional neural network to learn the operation mechanism of chaotic cryptosystem, and accept the trai
We illustrate through example 1 and 2 that the condition at theorem 1 in [8] dissatisfies necessity, and the converse proposition of fact 1.1 in [8] does not hold, namely the condition Z/M - L/Ak < 1/(2 Ak^2) is not sufficient for f(i) + f(j) = f(k).
Recently, it has been shown how McEliece public-key cryptosystems based on moderate-density parity-check (MDPC) codes allow for very compact keys compared to variants based on other code families. In this paper, classical (iterative) decoding schemes
We present a method to control the detection events in quantum key distribution systems that use gated single-photon detectors. We employ bright pulses as faked states, timed to arrive at the avalanche photodiodes outside the activation time. The att