ﻻ يوجد ملخص باللغة العربية
At Eurocrypt99, Paillier presented a public-key cryptosystem based on a novel computational problem. It has interested many researchers because it was additively homomorphic. In this paper, we show that there is a big difference between the original Pailliers encryption and some variants. The Pailliers encryption can be naturally transformed into a signature scheme but these variants miss the feature. In particular, we simplify the alternative decryption procedure of Bresson-Catalano-Pointcheval encryption scheme proposed at Asiacrypt03. The new version is more applicable to cloud computing because of its double trapdoor decryption mechanism and its flexibility to be integrated into other cryptographic schemes. It captures a new feature that its two groups of secret keys can be distributed to different users so as to enhance the robustness of key management.
We illustrate through example 1 and 2 that the condition at theorem 1 in [8] dissatisfies necessity, and the converse proposition of fact 1.1 in [8] does not hold, namely the condition Z/M - L/Ak < 1/(2 Ak^2) is not sufficient for f(i) + f(j) = f(k).
In this paper, the authors give the definitions of a coprime sequence and a lever function, and describe the five algorithms and six characteristics of a prototypal public key cryptosystem which is used for encryption and signature, and based on thre
Recently, it has been shown how McEliece public-key cryptosystems based on moderate-density parity-check (MDPC) codes allow for very compact keys compared to variants based on other code families. In this paper, classical (iterative) decoding schemes
Brauer and Fowler noted restrictions on the structure of a finite group G in terms of the order of the centralizer of an involution t in G. We consider variants of these themes. We first note that for an arbitrary finite group G of even order, we hav
This paper gives the definitions of an extra superincreasing sequence and an anomalous subset sum, and proposes a fast quantum-safe asymmetric cryptosystem called JUOAN2. The new cryptosystem is based on an additive multivariate permutation problem (