ترغب بنشر مسار تعليمي؟ اضغط هنا

A deep learning based known plaintext attack method for chaotic cryptosystem

87   0   0.0 ( 0 )
 نشر من قبل Fusen Wang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we propose a known-plaintext attack (KPA) method based on deep learning for traditional chaotic encryption scheme. We employ the convolutional neural network to learn the operation mechanism of chaotic cryptosystem, and accept the trained network as the final decryption system. To evaluate the attack performance of different networks on different chaotic cryptosystem, we adopt two neural networks to perform known-plaintext attacks on two distinct chaotic encryption schemes. The experimental results demonstrate the potential of deep learning-based method for known-plaintext attack against chaotic cryptosystem. Different from the previous known-plaintext attack methods, which were usually limited to a specific chaotic cryptosystem, a neural network can be applied to the cryptanalysis of various chaotic cryptosystems with deep learning-based approach, while several different networks can be designed for the cryptanalysis of chaotic cryptosystems. This paper provides a new idea for the cryptanalysis of chaotic image encryption algorithm.



قيم البحث

اقرأ أيضاً

In many previous works, a single-pixel imaging (SPI) system is constructed as an optical image encryption system. Unauthorized users are not able to reconstruct the plaintext image from the ciphertext intensity sequence without knowing the illuminati on pattern key. However, little cryptanalysis about encrypted SPI has been investigated in the past. In this work, we propose a known-plaintext attack scheme and a ciphertext-only attack scheme to an encrypted SPI system for the first time. The known-plaintext attack is implemented by interchanging the roles of illumination patterns and object images in the SPI model. The ciphertext-only attack is implemented based on the statistical features of single-pixel intensity values. The two schemes can crack encrypted SPI systems and successfully recover the key containing correct illumination patterns.
511 - An-Ping Li 2008
we will present an estimation for the upper-bound of the amount of 16-bytes plaintexts for English texts, which indicates that the block ciphers with block length no more than 16-bytes will be subject to recover plaintext attacks in the occasions of plaintext -known or plaintext-chosen attacks.
Since the first appearance in Fridrichs design, the usage of permutation-diffusion structure for designing digital image cryptosystem has been receiving increasing research attention in the field of chaos-based cryptography. Recently, a novel chaotic Image Cipher using one round Modified Permutation-Diffusion pattern (ICMPD) was proposed. Unlike traditional permutation-diffusion structure, the permutation is operated on bit level instead of pixel level and the diffusion is operated on masked pixels, which are obtained by carrying out the classical affine cipher, instead of plain pixels in ICMPD. Following a textit{divide-and-conquer strategy}, this paper reports that ICMPD can be compromised by a chosen-plaintext attack efficiently and the involved data complexity is linear to the size of the plain-image. Moreover, the relationship between the cryptographic kernel at the diffusion stage of ICMPD and modulo addition then XORing is explored thoroughly.
174 - Shenghui Su , , Shuwang Lu 2010
We illustrate through example 1 and 2 that the condition at theorem 1 in [8] dissatisfies necessity, and the converse proposition of fact 1.1 in [8] does not hold, namely the condition Z/M - L/Ak < 1/(2 Ak^2) is not sufficient for f(i) + f(j) = f(k). Illuminate through an analysis and ex.3 that there is a logic error during deduction of fact 1.2, which causes each of fact 1.2, 1.3, 4 to be invalid. Demonstrate through ex.4 and 5 that each or the combination of qu+1 > qu * D at fact 4 and table 1 at fact 2.2 is not sufficient for f(i) + f(j) = f(k), property 1, 2, 3, 4, 5 each are invalid, and alg.1 based on fact 4 and alg.2 based on table 1 are disordered and wrong logically. Further, manifest through a repeated experiment and ex.5 that the data at table 2 is falsified, and the example in [8] is woven elaborately. We explain why Cx = Ax * W^f(x) (% M) is changed to Cx = (Ax * W^f(x))^d (% M) in REESSE1+ v2.1. To the signature fraud, we point out that [8] misunderstands the existence of T^-1 and Q^-1 % (M-1), and forging of Q can be easily avoided through moving H. Therefore, the conclusion of [8] that REESSE1+ is not secure at all (which connotes that [8] can extract a related private key from any public key in REESSE1+) is fully incorrect, and as long as the parameter Omega is fitly selected, REESSE1+ with Cx = Ax * W^f(x) (% M) is secure.
168 - Jiawang Bai , Bin Chen , Yiming Li 2020
The deep hashing based retrieval method is widely adopted in large-scale image and video retrieval. However, there is little investigation on its security. In this paper, we propose a novel method, dubbed deep hashing targeted attack (DHTA), to study the targeted attack on such retrieval. Specifically, we first formulate the targeted attack as a point-to-set optimization, which minimizes the average distance between the hash code of an adversarial example and those of a set of objects with the target label. Then we design a novel component-voting scheme to obtain an anchor code as the representative of the set of hash codes of objects with the target label, whose optimality guarantee is also theoretically derived. To balance the performance and perceptibility, we propose to minimize the Hamming distance between the hash code of the adversarial example and the anchor code under the $ell^infty$ restriction on the perturbation. Extensive experiments verify that DHTA is effective in attacking both deep hashing based image retrieval and video retrieval.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا