ﻻ يوجد ملخص باللغة العربية
The spectral gap $gamma$ of a finite, ergodic, and reversible Markov chain is an important parameter measuring the asymptotic rate of convergence. In applications, the transition matrix $P$ may be unknown, yet one sample of the chain up to a fixed time $n$ may be observed. We consider here the problem of estimating $gamma$ from this data. Let $pi$ be the stationary distribution of $P$, and $pi_star = min_x pi(x)$. We show that if $n = tilde{O}bigl(frac{1}{gamma pi_star}bigr)$, then $gamma$ can be estimated to within multiplicative constants with high probability. When $pi$ is uniform on $d$ states, this matches (up to logarithmic correction) a lower bound of $tilde{Omega}bigl(frac{d}{gamma}bigr)$ steps required for precise estimation of $gamma$. Moreover, we provide the first procedure for computing a fully data-dependent interval, from a single finite-length trajectory of the chain, that traps the mixing time $t_{text{mix}}$ of the chain at a prescribed confidence level. The interval does not require the knowledge of any parameters of the chain. This stands in contrast to previous approaches, which either only provide point estimates, or require a reset mechanism, or additional prior knowledge. The interval is constructed around the relaxation time $t_{text{relax}} = 1/gamma$, which is strongly related to the mixing time, and the width of the interval converges to zero roughly at a $1/sqrt{n}$ rate, where $n$ is the length of the sample path.
We introduce a new nonparametric density estimator inspired by Markov Chains, and generalizing the well-known Kernel Density Estimator (KDE). Our estimator presents several benefits with respect to the usual ones and can be used straightforwardly as
The spectral gap $gamma$ of an ergodic and reversible Markov chain is an important parameter measuring the asymptotic rate of convergence. In applications, the transition matrix $P$ may be unknown, yet one sample of the chain up to a fixed time $t$ m
In this paper, we have established a unified framework of multistage parameter estimation. We demonstrate that a wide variety of statistical problems such as fixed-sample-size interval estimation, point estimation with error control, bounded-width co
Consider the case that one observes a single time-series, where at each time t one observes a data record O(t) involving treatment nodes A(t), possible covariates L(t) and an outcome node Y(t). The data record at time t carries information for an (po
Many modern techniques employed in physics, such a computation of path integrals, rely on random walks on graphs that can be represented as Markov chains. Traditionally, estimates of running times of such sampling algorithms are computed using the nu