ﻻ يوجد ملخص باللغة العربية
Many modern techniques employed in physics, such a computation of path integrals, rely on random walks on graphs that can be represented as Markov chains. Traditionally, estimates of running times of such sampling algorithms are computed using the number of steps in the chain needed to reach the stationary distribution. This quantity is generally defined as mixing time and is often difficult to compute. In this paper, we suggest an alternative estimate based on the Kolmogorov-Sinai entropy, by establishing a link between the maximization of KSE and the minimization of the mixing time. Since KSE are easier to compute in general than mixing time, this link provides a new faster method to approximate the minimum mixing time that could be interesting in computer sciences and statistical physics. Beyond this, our finding will also be of interest to the out-of-equilibrium community, by providing a new rational to select stationary states in out-of-equilibrium physics: it seems reasonable that in a physical system with two simultaneous equiprobable possible dynamics, the final stationary state will be closer to the stationary state corresponding to the fastest dynamics (smallest mixing time).Through the empirical link found in this letter, this state will correspond to a state of maximal Kolmogorov-Sinai entropy. If this is true, this would provide a more satisfying rule for selecting stationary states in complex systems such as climate than the maximization of the entropy production.
We derive rigorous results on the link between the principle of maximum entropy production and the principle of maximum Kolmogorov-Sinai entropy using a Markov model of the passive scalar diffusion called the Zero Range Process. We show analytically
We analyse and interpret the effects of breaking detailed balance on the convergence to equilibrium of conservative interacting particle systems and their hydrodynamic scaling limits. For finite systems of interacting particles, we review existing re
Motivated by robotic surveillance applications, this paper studies the novel problem of maximizing the return time entropy of a Markov chain, subject to a graph topology with travel times and stationary distribution. The return time entropy is the we
We study the entropy production in non-equilibrium quantum systems without dissipation, which is generated exclusively by the spontaneous breaking of time-reversal invariance. Systems which preserve the total energy and particle number and are in con
We use the kinetic theory of gases to compute the Kolmogorov-Sinai entropy per particle for a dilute gas in equilibrium. For an equilibrium system, the KS entropy, h_KS is the sum of all of the positive Lyapunov exponents characterizing the chaotic b